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Abstract

While the statement in this paper’s title is hardly astonishing, what is
astonishing is how difficult it is to prove without making use of mathematical
induction. Either that or Lucilla is bad at math.

0 Introduction

Let n ∈ Z. We define {
n is even ⇔ ∃k ∈ Z : n = 2k
n is odd ⇔ ∃k ∈ Z : n = 2k + 1

The goal of this paper is to prove the statement

∀n ∈ Z : n is even ⊗ n is odd

(where ⊗ denotes XOR, i.e. every integer is either even or odd; never both, never
neither). We will accomplish this in two steps, by proving two separate statements:{

∀n ∈ Z : ¬(n is even ∧ n is odd)
∀n ∈ Z : n is even ∨ n is odd

thus firstly that no integer can be both even and odd at the same time, and secondly
that no integer can be neither even nor odd at the same time.

It turns out that, while the truth of the first statement (henceforth affectionately
named NAND) can be easily shown, the second (henceforth called OR) requires
considerably more effort if you avoid using mathematical induction for it. This
paper aims to present just such a proof, of which the reader is implored to find one
of their own if they feel up to it before continuing.
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1 NAND

The proof (of both substatements) makes heavy use of a lemma about integers,
which, in the tradition of giving them funny names, will be referred to as the fence
post lemma:

Lemma fence-post-lemma

Any two distinct integers differ by at least 1.

The truth of this is so clear as to not even deserve being mentioned. Should, however,
a reader find it not obvious, they shall find a proof at the end of this paper.

With no more than that, we are already able to prove NAND:

Theorem NAND

No integer is both even and odd at the same time.

Proof. We proceed by contradiction. Suppose that there does exist an integer n
which is both even and odd. Then there exist integers k and l such that

n = 2k ∧ n = 2l + 1.

Equating the right-hand sides, we find that 2k = 2l + 1; dividing both sides by 2,
we obtain that k = l+ 1/2. Thus k and l are two integers that differ by 1/2. k and
l are obviously not equal, otherwise 2k = 2l+1 would imply 0 = 1. Thus they must
be distinct, and since they differ by less than 1, this is a contradiction to the fence
post lemma.

That was fast, but let us not rest on our laurels, for the real difficult part is yet to
come. We just did the easy bit.
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2 OR

We begin with a few definitions from elementary real analysis.

Definition inf, sup

The infimum of a non-empty set S of real numbers, denoted inf S, is a real number
a satisfying the conditions

• ∀x ∈ S : a ≤ x;
• ∀b ∈ R : (∀x ∈ S : b ≤ x) ⇒ b ≤ a,

if a number satisfying the first condition exists. In other words, the infimum is the
largest lower bound of the set S, if one exists.

The supremum, denoted supS, is similarly defined by replacing ≤ with ≥ in the
definition above, and is the smallest upper bound of S, if one exists.

If a is the infimum of S and additionally a ∈ S, then a is called the minimum of S.
Similarly, the supremum of S, if an element of S, is called the maximum of S.

It’s not difficult to see that infima (and suprema) are unique: let a and b both be
numbers that satisfy both conditions for an infimum, then it follows from the second
condition that a ≤ b and b ≤ a, thus a = b.

Also, if an infimum (supremum) is a minimum (maximum), then it suffices to check
for the first condition, since the second automatically follows: let a ≤ x for all x ∈ S
and further let a ∈ S. Then for every b such that b ≤ x for all x ∈ S, in particular
a ∈ S, so b ≤ a.

For some particularly well-behaved sets, it can be easily shown that an infimum is
necessarily a minimum (and likewise that a supremum is necessarily a maximum).
For instance, the infimum of a finite set is always a minimum: one can show this
by running the minimum-finding algorithm on the set, which will terminate after
finitely many steps, and return a number less than or equal to every element of the
set and itself in the set. We will instead show this property for sets of integers :

Lemma integer-inf-is-min

Let S be a set of integers. Then inf S, if it exists, is a minimum of S.
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Proof. Suppose the infimum of S is a. We will show that, firstly, ⌈a⌉ (a rounded
up to the nearest integer) also satisfies ⌈a⌉ ≤ x for all x ∈ S (and that therefore
a = ⌈a⌉), and secondly, that ⌈a⌉ ∈ S.

Suppose a is a lower bound of S, but ⌈a⌉ isn’t. It follows there exists an integer n in
S with a ≤ n and ⌈a⌉ > n. Since the difference between x and ⌈x⌉ is less than 1, it
follows that n and ⌈a⌉, both integers, must differ by less than 1, which contradicts
the fence post lemma.

Thus ⌈a⌉ is also a lower bound of S. Because a is an infimum of S, it follows that
⌈a⌉ ≤ a. But ⌈a⌉ ≥ a obviously because of the rounding-up function. Thus ⌈a⌉ = a.

We now show ⌈a⌉ ∈ S. Suppose ⌈a⌉ /∈ S. Then ⌈a⌉ < x for all x ∈ S (“<” means
“≤, but not =”), but since ⌈a⌉ and all x ∈ S are integers, by the fence post lemma,
they must differ by at least 1, which means ⌈a⌉ ≤ x − 1 for all x ∈ S. But then
⌈a⌉+ 1 is a bigger lower bound of S, a contradiction.

With this lemma (whose truth for suprema and maxima is proved analogously), we
can finally tackle the monster that is OR:

Theorem OR

Every integer is even or odd.

Proof. Suppose there exists an integer n which is neither even nor odd, thus for all
integers m it holds that 2m ̸= n and 2m+ 1 ̸= n.

Consider E = {m ∈ Z : 2m ≤ n} and k = supE. Because k is the supremum of a
set of integers, k is a maximum and thus itself an integer. Since k ∈ E, it follows
that 2k ≤ n. Because n is not even, 2k ̸= n, thus 2k < n. Since k is the maximum
of E, k+1 is not in E, thus 2(k+1) = 2k+2 > n. Overall we have n ∈ ]2k, 2k+2[.

Moreover, n ̸= 2k+1, since n is not odd, so we have two cases: either n ∈ ]2k, 2k+1[
or n ∈ ]2k + 1, 2k + 2[. Both are open intervals of length 1, which means n must
be distinct from both of its limiting values, and must have distance less than 1 to
both of them. But they are both integers, and so is n. This is a contradiction to
the fence post lemma.

Phew!
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3 Addendum

As promised, a proof of the fence post lemma, for those curious to know:

Lemma fence-post-lemma

Any two distinct integers differ by at least 1.

Proof. Let k and l be two integers and k ̸= l. Thus k− l ̸= 0. Because the absolute
value is a norm on R, it follows |k − l| > 0. But the difference of two integers is an
integer, and since the absolute value can at most negate the sign of its argument,
which still produces an integer, it follows |k− l| is a (positive) integer. The smallest
positive integer is 1.

And finally, a baby-easy proof of OR using mathematical induction. The reader is
implored to imagine it being read in a schoolchild’s monotonous voice.

Theorem OR-inductive

Every integer is even or odd.

Proof. We first show the statement for all n ∈ N.

The base case is n = 0. 0 is even, as there exists an integer k (namely 0) with
0 = 2k.

For the induction step, let n be even or odd. Suppose n is even, with n = 2k;
then n + 1 = 2k + 1 is odd. Suppose instead that n is odd, with n = 2k + 1; then
n + 1 = 2k + 2 = 2(k + 1) is even. Thus n being even or odd implies n + 1 being
even or odd.

Finally we show the statement for all n ∈ Z by proving that if n is even or odd,
then −n is.

Suppose n is even, with n = 2k; then −n = −2k = 2(−k) is even. Suppose instead
that n is odd, with n = 2k+ 1; then −n = −(2k+ 1) = −2k− 1 = 2(−k− 1) + 1 is
odd. Thus n being even or odd implies −n being even or odd.

Since Z = N ∪ {−n : n ∈ N}, the result follows.
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