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Abstract

This paper presents a novel merge-based sorting algorithm named “Fibonacci
sort”, which, while not particularly efficient relative to standard merge sort,
has a remarkable connection to the Fibonacci sequence despite never explicitly
calculating Fibonacci numbers. It also generalizes to an abstract description
of general merge sorts through a sequence of eliminating merge stops, where
a description of Fibonacci sort results in an astounding recursive integer
sequence related to the Fibonacci numbers.

0 Introduction

The following algorithm is curiously named “Fibonacci sort”:

function fibonacciSort(s: array) is

n := s.length

let v be a new list

initialize v to [—1,0, 1]

lo,mi, hi := last three values of v

while =(mi=0 A hi=n) do

if (hi=n VvV (mi#0 A 2-(hi—mi)>mi—lo)) then
merge (s, lo, mi, hi)
remove next-to-last value of v

else
‘ append hi + 1 to the end of v
end
lo,mi, hi := last three values of v
end
end

Why that name? The algorithm doesn’t compute the Fibonacci sequence in any
obvious way, nor does it seem to sort in a way dictated by the Fibonacci sequence
somehow. And yet the Fibonacci numbers feature prominently in its analysis,
specifically in the sequence of merges that it performs; and it also produces the
Zeckendorf representation of the length of its input array in the process. Let’s see.



1 Preliminaries

Actually, to make analysis easier, we will start by considering an algorithm with
different flow control. Equivalence of the two algorithms (in the sense that they
both perform the same sequence of steps and in the same order) will be discussed
at the end of this paper.

function fibonacciSort(s: array) is
n := s.length
let v be a new list
initialize v to [—1,0, 1]
lo,mi, hi := last three values of v
while hi # n do
append hi + 1 to the end of v
update lo, mi, ht
while (mi#0 A 2-(hi—mi) > mi—lo) do
merge (s, lo, mi, hi)
remove next-to-last value of v
update lo, mi, ht
end
end
while mi # 0 do
merge (s, lo, mi, hi)
remove next-to-last value of v

update lo, mi, hi

end
end

Here the merge procedure is defined as follows:

function merge (s: array; lo, mi, hi: N) is

let t be a new array of length hi — lo

i, j :=lo,mi

for kin 0 <k < ht — lo do

if (1<mi A (j=hi V s[i] <s[j])) then
| tlk] = s[i]; i++

else
|t =i 3+
end
end
forkin 0 <k < hi—lodo
| sllo+X] = t[K]
end
delete the array ¢

end




Fibonacci sort is a merge sort: it sorts an array by merging progressively longer runs
(sub-arrays which are already sorted) into a single run that contains the elements of
both. The merge procedure, which takes an array s and three so-called ‘merge stops’
lo,mi, hi (lo < mi < hi), assumes that the sub-arrays s[lo .. mi] and s[mi .. hi] are
already sorted, and merges them into a single sorted sub-array, writing the result
back to s[lo .. hi]. (Here lo .. hi means the range of indices k for which lo < k < hi,
i.e. left inclusive, right exclusive. In particular, lo .. mi and mi .. hi are adjacent
and disjoint.)

Since 1-element sub-arrays are always trivially sorted, many merge sorts (Fibonacci
sort included) start by assuming that only those sub-arrays are already sorted (this
assumption cannot be made more optimistic without looking at the array, since it
does hold for an array of pairwise unequal elements in descending order), and the
fact that a merge can be done in O(hi — lo) time is the fundamental fact ensuring
that merge sorts can have O(nlogn) complexity. (We take for granted that merge
as defined above really does merge, and does so in O(hi — lo) steps; it’s a standard
implementation.)

In Fibonacci sort, the list v controls the locations of ‘merge stops’ — boundary points
between sub-arrays that are known to be sorted. The leading entry —1 only serves
to ensure that v always has a minimal length of 3, so that all of lo, mi, hi are always
defined. Its exact value doesn’t matter, but throughout this paper we will stick to
the assumption that it is equal to —1; it will serve as a kind of ‘signaling value’
indicating that v has its minimal length.

The general idea of the algorithm is that v saves merge stops, and the algorithm
collects new merge stops from the left towards the right side of the array. As long
as the end of the array hasn’t been reached, it adds a new merge stop to the end
representing a one-element sub-array (since those are guaranteed to be sorted) and
then tries to merge as many as possible ‘conditionally’. When the end has been
reached, it merges all the remaining sub-arrays together ‘unconditionally’ until the
entire array is sorted.
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The essential point about Fibonacci sort is the condition “2 - (hi — mi) > mi — lo
necessary for a ‘conditional merge’ to happen, saying that the right sub-array must
be at least half the length of the left sub-array. This condition is weaker than for
binary merge sort, which always only merges two sub-arrays of exactly the same
length. But it also isn’t relaxed to no size condition at all; if it were, then every new
singleton sub-array would be merged instantly, and the algorithm would essentially
work like insertion sort, with O(n?) complexity. The condition for Fibonacci sort
strikes a sort of balance between these two extremes.

We will begin analysis of this algorithm with some elementary properties as well as
verifying that all its steps are always well-defined. Firstly, we begin with a simple
statement ensuring that v always has at least three elements (and thus lo, mi, hi are
never nil), and also exposing some basic properties of v. The length of v will be
denoted as |v|.



Lemma

|v| > 3 always holds, and the two leading elements of v are always v[0] = —1
and v[1] = 0. Moreover, (except for the first pair of entries,) v is always strictly
increasing, meaning v[i + 1] > v[i] for all (valid) i € N;i > 1.

Proof: We will use “induction over steps”: verifying that the initial value of v
satisfies the desired conditions, and that any modifications made to v over the course
of the program leave them still satisfied. (This technique is common to many proofs
in this paper.)

e The initial value of v, namely [—1,0, 1], has length 3, has —1 and 0 as its two
leading elements, and [0, 1] is strictly increasing.

e When an entry is added to the end of v, this entry has the value hi + 1, where
hi is the former last entry of v. Therefore, after the addition, hi+ 1 is the new
last entry and hi is the next-to-last entry, and they satisfy hi +1 > hi, so v
remains strictly increasing. If the former length of v was at least 3, then the
current length also is. Lastly, the first two elements are not modified.

e A merge can only happen if mi # 0. If |v| = 3, then mi = v[l] = 0, so a
merge is impossible; therefore, a merge can only happen if |v| > 4, in which
case mi = v[i] > v[l] = 0 for some i > 2. Thus after the merge, |v| > 3. mi is
the element that is deleted, but it’s not one of the first two elements, since its
index is at least 2. The sequence remains strictly increasing after the removal
because of the transitivity of <.

Another important result is that at the beginning of each iteration of the first while
loop, the triplets in v (collections of three adjacent elements, omitting the initial
index v[0]) are “non-squeezy”, meaning that they don’t satisfy the merge condition.

Lemma

At the beginning of each iteration of the first while loop, the triplets of v are all
non-squeezy, meaning 2-(v[i+2]—v[i+1]) < v[i+1]—v[i] for all (valid) i € N, i > 1.
More generally, throughout the entirety of the first while loop, there is always at
most one squeezy triplet in v, at the very end; so that if it does hold for some i > 1
that 2 - (v[i + 2] —v[i+1]) > v[i + 1] — v[i], then i = |v| — 3.

Proof: “Induction over steps”:

e For the initial value of v, the statement is vacuously true, as there is only one
non-initial gap.

e When an entry is added to the end of v, all the previous triplets were not
squeezy, so now there is at most one squeezy triplet, at the end. We then
begin an inner while loop of merging for as long as |v| > 4 and the last triplet



is squeezy. Each merge can be thought of as removing the last three elements
of v and then reinserting the first and last of those three back into v. This
eliminates the last squeezy triplet, but it potentially introduces a new one —
though, again, only at most one. This continues until the inner while loop
terminates when a merge is not possible, either because |v| = 3 or there is no
more squeezy triplet at the end; in both cases, all the remaining triplets are
NOW Non-squeezy.

Finally, during the first while loop, the “gaps” of v (differences between adjacent
clements, again ignoring the first pair v[1] — v[0]) are decreasing in size.

Lemma

Throughout the first while loop, the gaps of v are always decreasing, meaning
v[i+ 2] —v[i+1] <wv[i+ 1] —o[i] for all (valid) i € N,i > 1. Moreover, the only
case where the inequality is not strict is if both sides have the value 1.

Proof: “Induction over steps”:
e For the initial value of v, the statement is vacuously true.

e When an entry is added to the end of v, it forms a gap of size 1. Because v
itself is strictly increasing, the previous gap had to have had a size of at least
1, thus the gaps of v remain (not necessarily strictly) decreasing.

e When a merge happens, if |v| = 4, then after the merge it is 3 and we have a
vacuous truth (and if |v| = 3, then a merge cannot even take place). Thus we
may assume |v| > 5. Thus v has at least four trailing elements unequal to —1,
and they satisfy the decreasing property of gaps. Symbolically:

v=1_[..,a,b,¢c,d] with b—a>c—b>d—c.

In the first while loop, in order for a merge to happen, the additional condition
2. (d—c¢) > ¢— b must be met. Moreover, 2 (¢ —b) > b — a must not hold,
since no triplets apart from possibly the final one may be squeezy. Combining
the inequality 2- (¢ —b) < b—a with ¢ — b > d — ¢ yields

2-(c=b) < b—a

2:¢c—2-b < b—ua
b+d < 2-c < 3-b—a
b+d+a < 2-c+a < 3-D
d+a < 2-b
d—>b < b—a,

so that the gaps of v remain decreasing after ¢ is removed, ensuring even strict
inequality.



2 The Fibonacci in the sort

We can now analyze the connection between Fibonacci sort and the Fibonacci
sequence, the entire reason behind its name. From here onwards, let Fib be the
Fibonacci sequence; that is, Fib[0] = 0, Fib[1l] = 1, and for all 1 > 2, Fib[i] =
Fib[i — 1] + Fib[i — 2].

Fib obeys a kind of “squeeze property”: namely, for all i > 0, it holds both that
Fib[i] < Fib[i+1] and that 2-Fib[i] > Fib[i + 1], where the former is true even with
strict inequality for i > 2, and the latter is true with strict inequality for i > 3.
(The proof is simply that the latter inequality is equivalent to Fib[i — 1] < Fib[i].)

The key to the connection between Fibonacci numbers and Fibonacci sort is a kind of
converse of this squeeze property: namely, if Fib[i] and Fib[j] are Fibonacci numbers
that satisfy Fib[i] < Fib[j] and 2 - Fib[i] > Fib[j], then they are adjacent.

Lemma

Let i > 2, j > 2. If Fib[i] < Fib[j] and 2 - Fib[i] > Fib[j], then j =1 + 1.
Proof:

e Starting from index 1, Fib has only positive integer entries, since Fib[1] = 1,
Fib[2] = 1, and all further entries are sums of positive integers, thus also
positive integers.

e Starting from index 2, Fib is strictly increasing (meaning Fib[i + 1] > Fib[i]
for all i > 2), since Fib[i + 1] — Fib[i] = Fib[i — 1], which is always a positive
integer for i > 2.

e We now show that the squeeze property does not hold for a pair of Fibonacci
numbers two indices apart. Let i > 2,j > 2. If Fib[i] < Fib[j], then by
the strict increasing property, we have i < j. Suppose that j = i + 2, then
Fib[i + 2] = Fib[i + 1] + Fib[i] > Fib[i] 4 Fib[i] and therefore 2-Fib[i] < Fib[j],
so the squeeze property does not hold. Similarly, if j = i + n for even higher
n > 2, Fib[j] will be even bigger. Therefore, a necessary condition for the
squeeze property to hold is that j = i 4+ 1, which completes the proof.

A crucial corollary is that if fy and f; are (any) two Fibonacci numbers satisfying
the squeeze property, then fy + f; is also a Fibonacci number. Indeed, it means
fo and f; are adjacent Fibonacci numbers, and the sum of two adjacent Fibonacci
numbers is itself a Fibonacci number.

Now we're finally able to make the connection. As an appetizer, let’s first look at
the sequence of states of v when sorting an array of length 8.



v gaps of v

(-1, 0, 1] (1, 1]

(-1, 0, 1, 2] [1, 1, 1]
(-1, 0, 2] [1, 2]

(-1, 0, 2, 3] [1, 2, 1]
[-1, 0, 3] [1, 3]

[-1, 0, 3, 4] (1, 3, 1]
(-1, 0, 8, 4, 51 [1, 3, 1, 1]
(-1, 0, 3, 5] [1, 3, 2]
[-1, 0, 5] [1, 5]

[-1, 0, 5, 6] [1, 5, 1]
(-1, 0, 5, 6, 71 [1, 5, 1, 1]
(-1, 0, 5, 7] [1, 5, 2]
(-1, 0, 5, 7,8 [1, 5, 2, 1]
(-1, 0, 5, 8] [1, 5, 3]
[-1, 0, 8] [1, 8]

Perhaps the clearest observation is that whenever |v| = 3, the three terms of v

are —1, 0, and a Fibonacci number; and that whenever a merge happens, the last
three terms of v are of the form [c,c + fo,c + fi], where fy and f; are Fibonacci
numbers. In fact, an even more surprising fact is true: all the non-initial gaps in v
are always Fibonacci numbers. This theorem is actually the entry point to all the
other statements about the presence of Fibonacci numbers in v, so let’s start here.

Theorem gaps of v are Fibonacci
During the first while loop, for all 1 > 1, v[i 4+ 1] — v[i] is a Fibonacci number.
Proof: “Induction over steps”:

e The initial state [—1,0, 1] satisfies 1 — 0 =1 € Fib.

e Whenever an item is added to the end of v, it’s equal to the value of the

previous last item plus one, so the new gap is the number 1, which, again, is
in Fib.

e When a merge happens, call the last three entries lo, mi, hi. By the induction
hypothesis, mi — lo =: a € Fib and hi — mi =: b € Fib. Moreover, 2-b > a,
because we've passed the check for a ‘conditional merge’, and either b < a or
b=a = 1. In both cases, a + b is a Fibonacci number. But this is none other
than hi — lo, which is the gap that remains after mi has been removed.

From this theorem, we can deduce two of our observations as immediate corollaries.



Corollary

Whenever a merge happens, the last three terms of v are of the form [c, c+ fo, ¢+ f1],
where fo, fi € Fib.

Proof: It follows from the proof of the theorem above that hi — mi =: b and
mt — lo =: a are, in particular, consecutive Fibonacci numbers; thus mi — lo = a
and hi — lo = a + b are also (consecutive) Fibonacci numbers. [
Corollary

When |v| = 3, then there exists f € Fib such that v = [—1,0, f].

Proof: “Induction over steps”:

The base case [—1, 0, 1] satisfies the claim because 1 € Fib.

Adding a new term increases |v| to at least 4.

When a merge happens and |v| becomes 3, it must have come from [—1,0,a, ]
because the first two terms are always —1 and 0. From the previous corollary, a and
b are (consecutive) Fibonacci numbers. In particular, b € Fib, so after the merge,
v =[—1,0,b] satisfies the claim. |

Finally, something astonishing happens if we examine what happens right after the
first while loop is complete, but before the second while loop starts: It turns
out that in that moment, the gaps of v encode a representation of the Zeckendorf
decomposition of the length of the list, n.

Theorem

After the end of the first while loop, the sequence of gaps of v, with the leading 1
removed, is the Zeckendorf representation of n (the length of the array being sorted)
in descending order.

Proof:
e We know all the gaps of v are Fibonacci numbers and that they are decreasing.

e Every pair of consecutive entries in the gaps of v after the first while loop
cannot consist of consecutive Fibonacci numbers (let alone two of the same
number), since if they were, then the corresponding triplet would be squeezy.
In particular, the entries are pairwise distinct.

e The sum of their values is a telescoping sum, giving v[|v|—1]—v[l] = n—0 = n,
where v[|v| — 1] = n holds because we’ve reached the end of the first while
loop.

e Since the Zeckendorf representation of a positive integer is unique, the proof
is complete.



3 Properties of the sort

Now that we’ve explained the “Fibonacci” part of the name “Fibonacci sort”, it’s
time to move on to the “sort” part. We’ll prove that this algorithm actually sorts
at all, and moreover, that it does so in O(nlogn) time.

First we need a lemma that verifies that v really does what it’s meant to do:

Lemma

The entries of v, with v[0] = —1 deleted, encode the sub-arrays of the list s which
are guaranteed to be sorted. In particular, for all (valid) 1 € N;i > 1, the sub-array
s[v[i] .. v[i + 1]] is sorted.

Proof: “Induction over steps” once more:

e In [—1,0,1], the only relevant gap is (0, 1), which corresponds to the trivially
true claim that the (singleton) sub-array s[0 .. 1] is sorted.

e When an item is added to the end of v, its value is one more than the previously
last entry, which corresponds to the trivially true claim that some singleton
sub-array sz .. z + 1] is sorted.

e When a merge is performed, denote the last three entries of v by lo, mi, hi.
By the induction hypothesis, s[lo .. mi] and s[mi .. hi] are sorted. We perform
merge(s, lo,mi, hi). Thus, after the merge, s[lo .. hi] is sorted, which is exactly
what v encodes when ms is removed.

From this, it’s only a quick corollary to prove that Fibonacci sort does indeed sort:
Theorem Fibonacci sort is a sort
At the end of the algorithm, s is sorted.
Proof:
e At the end of the first while loop, the final element of v is n.
e At the end of the second while loop, v = [—1,0,n].
o It follows that s[0 .. n] is sorted then. But s[0 .. n| = s.

Still, even if Fibonacci sort does sort, so does bogosort — the tricky part is to sort fast.
Fibonacci sort does indeed achieve the optimal asymptotic complexity of O(nlogn),
the same as ordinary merge sort — as we’ll see next.



We'll start with a lemma about the possible intersections of integer ranges caused
by merges.
Lemma

If two merges (lo,mi, hi) and (lo’, mi’, hi") happen at any time over the course of
the first while loop, then the ranges lo .. hi and [0’ .. hi’ are either disjoint or one

is a subset of the other.

Proof: We know lo < hi and [0’ < hi’. We enumerate all possible cases:

1--h 1-—-h 1--——-h | 1--—--- h| 1---h
L--H L---H L----H L--—-——- H| L--—---- H
v v X 4 v

I h 1-—————- h 1-—-h
L---H L--—---- H L--—--—- H
v v v

1-—————- h|1--—--—-- h|1---—-h 1-—-h 1--h
L---H L----- H L----H L---H L--H
v 4 X 4 v

where (1,h) := (lo, hi) and (L,H) := (1o, ht').
From the enumeration of cases, the claim is true in all cases marked with vand false
in all cases marked with X. It follows that if the claim is false, then

either 1o <lo< hi’ <hi or lo<lo < hi< hi.

Assume without loss of generality that (lo, mi, hi) is the merge that happened first.
Then, no more entry x with lo < x < hi can ever occur in v again, since all
items before lo are already less than lo and all items after hi will be greater than
hi. Therefore, (1o, mi’, hi") can never happen, since in that case lo < lo’ < hi or
lo < hi’ < hi would follow; a contradiction. |

This lemma lets us conclude that any two merges of the same size must be disjoint:

Corollary

If two distinct merges (lo, mi, hi) and (lo',mi’, hi’") happen at any time over the
course of the first while loop, and hi — lo = hi’ — 10', then lo .. hi and lo' .. hi" are
disjoint.

Proof: The lemma above tells us that they must be either disjoint or one must be
a subset of the other. But in the second case, lo = [0’ and hi = hi’. If two merges
with the same start- and end-point happen at different times, then there would have
to be a mi’ satisfying lo < mi’ < hi after (lo, mi, hi) with lo < mi < hi had already
taken place; this contradicts what we have proven in the lemma above. |

This corollary implies that the number of merges of a fized size [ during the first
while loop is bounded from above by [n/l|, where n is the length of the list s.



This allows us to prove that the first while loop takes no more than O(nlogn).

Theorem first while loop is O(nlogn)

Assuming the time spent on steps other than merging is negligible, the first while
loop executes in O(nlogn) steps, where n is the length of the list s.

Proof:

e All merges are of size hi — lo, where (lo,mi,hi) are the last three entries
of v at the instant the merge is happening. This number, being equal to
(mi — lo) + (hi — mi), the sum of two consecutive Fibonacci numbers, is a
Fibonacci number.

e Since the number of merges of size [ is bounded from above by |[n/l], and
every merge of (lo,mi, hi) takes O(hi — lo) steps, the total cost of all merges
of size [ is bounded by O(% - 1) = O(n).

e Therefore, the total cost of all merges (of any size) is bounded by the sum
over all possible merge sizes of the total cost of merges of that size, which is

O((# possible merge sizes) n)

= O((# Fibonacci numbers less than n) -n)

O(logn)

= O(nlogn),

since Fib[k] ~ ¢*/v/5 € ©(p*) and therefore k € O(log,,(Fib[k])), where ¢ is
the golden ratio.

This implies that the algorithm takes O(nlogn) steps if the length of the input list
is a Fibonacci number, since in that case, its Zeckendorf representation consists of
just that number itself. To prove that the algorithm runs in O(nlogn) time for any
input, we find an upper bound for the steps necessary in the second while loop.

Theorem second while loop is O(nlogn)

Assuming the time spent on steps other than merging is negligible, the second while
loop executes in O(nlogn) steps.

Proof: The number of merges performed in the second while loop equals the
number of Zeckendorf components minus 1 (since every gap corresponds to one of
them; each merge reduces |v| by one; we terminate when there’s only one gap left).
The cost of each merge is bounded by at most O(n). The number of Zeckendorf
components is bounded by % times the number of Fibonacci numbers not exceeding
n, which is O(logn). Together, we obtain O(nlogn) steps. |

Therefore the entire algorithm runs in O(nlogn) time, as desired.
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All the results leading up to this point were proven about the alternative version
of the Fibonacci sort algorithm. We conclude this section with a remark on the
equivalence of the two versions. For n = 0 and n = 1 both algorithms do nothing,
as the lists are already sorted. Assuming n > 2, both algorithms proceed through
the “progress states” in the leftmost column, and can be shown to do equivalent
things in each case:

original alternative
start v=1[-1,0,1,2], v=1[-1,0,1,2],
beginning of while | beginning of inner while
hi < n; merge; go to merge; go to
conditional be innii ’ff while | beginnin %)f’ iiner while
merge possible & & & &
hi < n;
.. add 1; go to add 1; go to
conditional o . o . .
. : beginning of while | beginning of inner while
merge impossible
hi = n; merge; go to merge; go to
conditional TELES; & . | TIeIEE: B .
: beginning of while | beginning of inner while
merge possible
i o leave first while if in it;
conditional o
. . merge; go to unconditional merge;
merge impossible; .. . .
o beginning of while go to beginning of
unconditional X
. second while
merge possible
hi = n;
no merge possible stop stop
(mi =0)
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4 Generalized mergesorts, the fairy sequence

The strategy that Fibonacci sort uses to keep track of which runs are sorted gives
rise to an idea: what if we start a merge sort from a list of currently sorted runs,
and simply merge by continuously removing the middle of a triplet of ‘merge stops’
until no more sub-arrays are left to merge?

In other words, we want to have an analogue of our list v, which will track the
currently sorted runs using a list of ‘run barriers’. Unlike in Fibonacci sort, however,
we’ll want it to start out by already containing information about all the sorted runs,
so that the only changes ever made to it are removing elements:

e The only sub-arrays guaranteed to be initially sorted are the singletons, so we
want v to start off as [0,...,n] (both 0 and n are inclusive, so that v initially
has length n + 1).

e Each merge eliminates one ‘run barrier’; turning some [...,lo, mi, hi, . ..] into
[...,lo,hi,...]. Thus, each merge removes one non-initial, non-final element.

e We terminate when v becomes [0, n], since we know this means the entire list
is sorted.

A generalized mergesort can then be described simply by specifying in what order
the run barriers should be eliminated, i.e. an iterator procedure that produces all
numbers i € N with 0 < i < n in some order.

Some examples from known sorting algorithms:
e Bottom-up (binary) mergesort, n = 2*:

1,3,5,...,n—1,2,6,10,...,n—2,4,12,20,...,n— 4, ... ,n/2

e Left-to-right (binary) mergesort, n = 2*:
1,3,2,5,7,6,4,9,11,10,13,15,14,12,8,...  (A108918 in the OEIS)

e Insertion sort:
1,2.3,4,...,n—1

A remarkable novel sequence appears when we consider the sequence of merges that
Fibonacci sort performs (for n € Fib, or, alternatively, for n — oo, which is what
we’ll consider it as being from now on). Here it is:

1,2,4,3,6,7,5,9,10,12,11,8, 14, 15,17, 16, 19, 20, 18, 13, . ..

As of Tau Day 2024, there is no OEIS entry for this sequence.
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Let’s call this sequence the fairy sequence and denote it by Fai. We already know
how we can compute Fai to any desired length n: just pick ng > n,ny € Fib and
sort an array of length ng and keep track of where you merge. But this sequence
also hides a marvelous recursive pattern, and can therefore also be computed from
its own previous entries. The claim is that the following algorithm computes Fai:

function fairySequence() is
let Fai be a new empty array
i=1
repeat forever
for j in 0 < j < Fib[i] — 1 do
| append Fai[j] + Fib[i + 1] to the end of Fai
end
append Fib[i + 1] to the end of Fai
i++
end

end

Note that Fib[0] = 0 and Fib[1] = Fib[2] = 1, so the first two iterations of the repeat
loop have a vacuous for loop.

The main idea why this recursive algorithm works is because the merges in Fibonacci
sort are themselves highly recursive, as the next lemma shows. If v and w are arrays,
we write v .. w for their concatenation.

Lemma

Whenever v = [—1,0,Fib[i]] for some i € N;i > 3 (Fib[i] > 2), meaning
that v’ := the array of gaps of v is [1,Fib[i]], then v" will go on to evolve as
v wy, v wy, ..., v [Fib[i — 1]], [1, Fib[i 4 1]], where the w,, are the states

of v/ from the beginning of Fibonacci sort (that is, [1,1]) until the point where
[1,Fib[i — 1]], with the leading 1 removed.

The claim of this lemma is a bit of a mouthful, so let’s demonstrate it with an
example. Say v' = [1,5]. The states of v starting from [1, 1] up to [1, 3] unfold as
follows:

1], [1,1,1], [1,2], [1,2,1], [1,3].

With the leading 1s removed, this becomes
A, a2, 12,1, B3

Thus the lemma says that the next states of v’ after [1, 5] will be the concatenations
of [1,5] with the states above; and sure enough, v’ goes on to evolve as

[1,5,1), [1,5,1,1], [1,5,2], [1,5,2,1], [1,5,3], [1,8].

This lemma includes the claim that o’ will reach the state [1,Fib[i — 1]] at all; but
a proof by induction over i will handle that just fine. It also implies that if v’ has
reached the state [1, Fib[i]], then it will reach the state [1, Fib[i 4 1]].
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Proof: Induction over i.

The base case is i = 3, Fib[i] = 2. In this case, v" = [1,2], and it evolves
into [1,2, 1], which is the concatenation of [1,2] with [1,1] = [1,Fib[i — 1]]
with the leading 1 removed, and then into [1,3] = [1, Fib[i + 1]]. In particular,
[1,Fib[i — 1]] = [1, 1] has occurred.

Suppose that the claim has been shown for all j < i, and suppose that v/ =
[1,Fib[i]]. The next thing the algorithm will do is append 1, giving v/ =
[1,Fib[i], 1]. The algorithm will go on to append and merge at the end of v’
in the same way as it has at the beginning of the algorithm, because all the
operations are local and depend only on the last few elements of v’ — clearly
these states are exactly the concatenations as specified in the lemma, since the
algorithm has earlier done those exact things starting from v" = [1, 1] instead.
A chain of merges will never propagate past Fib[i] until the entry right after
Fib[i] becomes Fib[i — 1], because all the entries of v" are always Fibonacci
numbers and Fib[i—1] is the smallest one that is squeezy with respect to Fib[i],
allowing a merge to propagate. The state [1, Fib[i], Fib[i — 1]] will occur, by
the induction hypothesis; and once it does, the next operation will be another
merge, resulting in [1, Fib[1 + 1]].

In particular, since the state v = [—1, 0, 1] occurs (right at the beginning), the lemma
implies that for any Fibonacci number f, the state v = [—1,0, f] will occur.

This already gives us an idea of how the positions of the merge stops will end up
recursive just like in the fairySequence algorithm; but before we proceed, we need
to make sure that their numbers match up. In every iteration of the repeat loop,
fairySequence adds a total of Fib[i] new entries (Fib[i] — 1 from the for loop, plus

one).

We need to make sure that this is the same as the number of merges between

the states v = [1,Fib[i + 1]] and v’ = [1, Fib[1 + 2]].

We first need a counting lemma.

Lemma

Foralli e N;i > 3,

Fibli] =1+ >  Fib[j] =2+ Y  Fib[j].

jel.i—1 je2.i—1

Proof: The base case i = 3 is true, with both sides being 2. For the induction
step, note that

jel..i

S Fib[j] = ( 3 Fib[j]) +Fib[i — 1] = Fib[i] + Fib[i — 1] — 1 = Fib[i + 1] — 1.

jel.i—1

The equivalence of the two sums follows from Fib[1] = 1. |
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Lemma

The number of entries added to fairySequence in an iteration of its repeat loop,
namely Fib[i], is equal to the number of merges made between the states v/ =
[1,Fib[i + 1]] and v’ = [1, Fib[1 + 2]].

Proof: Induction over i.
e One merge happens between [1, 1] and [1, 2], namely [1,1,1] — [1,2].
e Suppose the claim has been shown for all j < i. Denote
f:=Fib[i], f,:=Fib[i—1], f,:=Fib[i+1].

We want to count the number of merges from [1, f] to [1, f, f,] to be f, — 1,
because then one more merge to [1, fs] will yield f, merges overall.

We know that v = [—1,0, f] will evolve into [—1,0, f, 1], and then, by the
lemma above, [—1,0, f,2], [-1,0, f,3], [-1,0, f, 5], and so on, through all the
Fibonacci numbers up to [—1,0, f, f,]. The induction hypothesis holds for
them all, which gives us

> Fib[j] =Fibfi = 1] — 1 = f, — 1

jEL..i—2

merges overall.

In particular, the last merge, namely
[1, Fib[1 + 1], Fib[iH — [1, Fib[i + 2]]
corresponds to the final addition of an entry, outside the for loop.

Theorem fairy sequence recursive algorithm

The algorithm fairySequence is well-defined (it never accesses elements of Fai that
don’t exist yet) and computes Fai.

Proof: Both the sequence of merges and the fairy sequence start with 1, 2.

From the lemmas above it follows that between the states v = [1, Fib[i + 1]] and
v" = [1, Fib[1 + 1], Fib[i]], the algorithm will have made the same Fib[i] — 1 merges
as at the start, just offset by Fib[i 4 1] units; which is exactly what the for loop
accomplishes. Finally, the merge from [1, Fib[i + 1], Fib[i]] to [1, Fib[i 4 2]] happens
at location Fib[i + 1].

In an iteration of the repeat loop where the algorithm needs Fib[i] — 1 previous
values, Fai already has Z Fib[j|] = Fib[i + 2] — 1 > Fib[i] — 1 entries from the

jel.i
previous iterations. |
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From the recursive algorithm and our theorem, we obtain some very fancy recurrence
relations for the fairy sequence. Let Fai* be the two-indexed fairy sequence, i.e.
Fai*[i] := Fai[i — 2], or equivalently, Fai* is Fai with two garbage values, say zeros,
prepended to the start. Then we have

Fai* [Fib[i + 1]] = Fib[1],
and for all k > 0,k < Fib[i — 1]
Fai*[Fib[i] 4+ k| = Fib[i] + Fai*[k + 1].
Moreover, the following corollaries hold:

Corollary

Let Fai, be the one-indexed fairy sequence, i.e. Fai,[i] := Fai[i — 1]. The restriction
of Fai, to any domain of the form 1 .. f, where f € Fib, is a permutation.

Proof: Those are precisely the merges done in Fibonacci sort until a state v =
[—1,0, f] is reached. If Fibonacci sort is run with a list of length f as input, this
is precisely where it will halt, and it will have eliminated all barrier stops in 1 .. f
precisely once. |

Corollary

Fai, is a permutation of N, .

Proof: Follows immediately from the previous one because for each natural number
there is a Fibonacci number greater than it. ]

These two corollaries justify the (perhaps more serious-sounding) name “Fibonacci
Gray code” for Fai, because it shares analogous properties with the Gray code
sequence

0,1,3,2,6,7,5,4,12,13,15,14,10,11,9,8,...  (A003188 in the OEIS)

whose restriction to any domain of the form 0 .. 2¥ is a permutation, and which is
a permutation of N.

However, apart from this rather surface-level similarity, there is no bigger connection
between Fai and any kind of Fibonacci equivalent of Gray codes; besides, the name
“fairy sequence” sounds a lot cooler.
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Fibonacci sort implementation in Nim
The following pages contain a Nim implementation of the Fibonacci sort algorithm,
along with terminal printouts of the state of v after every addition and merge. Both

the original and alternative algorithm are included; the alternative one additionally
distinguishes between conditional and unconditional merges in the printouts.

import std/[strutils, terminal]

proc merge[T](s: var openArray([T]; lo, mi, hi: int) =

if s[mi - 1] <= s[mil]: return
var t = newSeq[T](hi - 1lo)
var i = 1lo
var j = mi
for k in 0 ..< hi - lo:
if i < mi and (j == hi or s[i] <= s[jl):
t[k] = s[il
inc i
else:
t[k] = s[j]
inc j

for k in 0 ..< hi - 1lo:
s[lo + k] = t[k]
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proc fibonacciSort[T](s: var openArrayl[T]) =
let n = s.len
if n <= 1: return

var
lo = -1
mi = O
hi = 1
var v = Q@[lo, mi, hi]
while not (mi == 0 and hi == n):
if hi == n or (mi !'= 0 and 2 * (hi - mi) >= mi - lo):
merge (s, lo, mi, hi)
v.delete(v.len - 2)
styledEcho (fgMagenta, "xmerge: ", resetStyle, $v)
else:
v.add (hi + 1)
styledEcho (fgRed, "add ", align($(hi+1), 2), ": ",

resetStyle, $v)
(lo, mi, hi) = (v[~3], v["2], v[~1])

proc fibonacciSortAlt[T](s: var openArrayl[T]) =
let n = s.len
if n <= 1: return

var

lo = -1

mi = 0

hi = 1
var v. = @[lo, mi, hil
while hi != n:

v.add (hi + 1)
styledEcho (fgRed, "add ", align($(hi+1), 2), ": "
resetStyle, $v)
(lo, mi, hi) = (v[~3], v[~2], v["1])
while mi != 0 and 2 * (hi - mi) >= mi - lo:
merge (s, lo, mi, hi)
v.delete(v.len - 2)

styledEcho (fgGreen, "cmerge: ", resetStyle, $v)
(lo, mi, hi) = (v[~3], v[~2], v["1])
while mi != O:

merge(s, lo, mi, hi)

v.delete(v.len - 2)

styledEcho (fgCyan, "umerge: ", resetStyle, $v)
(lo, mi, hi) = (v[~3], v["2], v[~1])
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