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Abstract

In this thesis we outline the fundamentals of the theory of orthomodular lattices
before deriving the structure and basic properties of the free orthomodular lattice
with two generators. We then introduce a notation proposed by Mirko Navara for the
elements of this lattice, and extend its original scope to a novel form of arithmetic in
orthomodular lattices.
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Chapter 1

Basic Concepts

1.1 Lattices
A lattice is a set L equipped with two binary operations ∧ and ∨ (read “meet” and
“join”) such that both operations are commutative and associative and they satisfy
the absorption laws

∀ a, b ∈ L : (b ∨ a) ∧ a = a and (b ∧ a) ∨ a = a.

All lattices also satisfy the idempotent laws : a ∧ a = a = a ∨ a for all a ∈ L. This is
a direct consequence of the absorption laws:

a ∧ a = ((a ∧ a) ∨ a) ∧ a = a; a ∨ a = ((a ∨ a) ∧ a) ∨ a = a.

Observe that the six lattice axioms (two associative laws, two commutative laws, two
absorption laws) can be grouped into pairs in which ∧ is swapped with ∨ and vice
versa. This implies that if (L,∧,∨) is a lattice, then so is its dual lattice (L,∨,∧).
Thus we obtain ([4], p. 5):

Duality Principle for Lattices. If a statement is true of all lattices, then its dual
(obtained by exchanging ∧ with ∨) is also true of all lattices.

In any lattice, for any two elements a, b ∈ L, the conditions a = a∧b and b = a∨b are
equivalent: suppose a = a∧b holds, then by the absorption laws a∨b = (a∧b)∨b = b;
the reverse implication is analogous. We denote both of these equivalent properties
as a ≤ b. The dual notion is ≥, which is also the converse relation.

The relation ≤ thus defined is reflexive, antisymmetric, and transitive, making L
into a poset: all a, b, c ∈ L satisfy

a = a ∧ a;
(a = a ∧ b and b = b ∧ a) implies a = b;

(a = a ∧ b and b = b ∧ c) implies a = a ∧ b = a ∧ (b ∧ c) = (a ∧ b) ∧ c = a ∧ c.
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If the lattice (L,∧,∨) induces the poset (P,≤), then its dual lattice (L,∨,∧) induces
(P,≥), which is also a poset.

Some elementary properties through which this partial order interacts with the lattice
operations are as follows: for all a, b, c ∈ L,

• a ∧ b ≤ a and a ∧ b ≤ b; dually a ∨ b ≥ a and a ∨ b ≥ b; (P1)

• (c ≤ a and c ≤ b) ⇒ c ≤ a ∧ b; dually, (c ≥ a and c ≥ b) ⇒ c ≥ a ∨ b; (P2)

• Isotone property: a ≤ b implies c ∧ a ≤ c ∧ b and c ∨ a ≤ c ∨ b. (P3)

The proofs (shown here only for the versions with ∧; the others are dual) are
straightforward:

a ∧ b = (a ∧ a) ∧ b = a ∧ (a ∧ b) and a ∧ b = a ∧ (b ∧ b) = (a ∧ b) ∧ b;
(c = c ∧ a and c = c ∧ b) implies c = c ∧ b = (c ∧ a) ∧ b = c ∧ (a ∧ b);
a = a ∧ b implies c ∧ a = c ∧ (a ∧ b) = (c ∧ c) ∧ (a ∧ b) = (c ∧ a) ∧ (c ∧ b).

Our thus constructed poset is even a lattice poset : it has an additional property,
which we will now exhibit. Let P be any poset and define the greatest lower bound
or infimum of a subset K ⊆ P , denoted infK, as an element x ∈ P such that
x ≤ a for all a ∈ K and, for any t ∈ P , the condition (t ≤ a for all a ∈ K) implies
t ≤ x. The least upper bound or supremum, denoted supK, is defined analogously
by substituting ≥ for ≤. By antisymmetry, greatest lower bounds and least upper
bounds are unique if they exist. We say that a poset P is a lattice poset if for any
subset {a, b} ∈ P , the infimum and supremum exists. Our poset constructed from
the lattice (L,∧,∨) is a lattice poset, in which additionally the infima and suprema
are equal to the meets and joins: inf{a, b} = a ∧ b and sup{a, b} = a ∨ b. This is a
direct consequence of the properties (P1) and (P2).

Conversely, let us start with a lattice poset P and define two binary operations ∧
and ∨ on P by

a ∧ b := inf{a, b}; a ∨ b := sup{a, b}.

Then the resulting structure on P is a lattice. The following result holds ([4], pp.
12–14):

Two Definitions of Lattices. For a lattice (L,∧,∨), denote by ≤∧ the relation
defined by a ≤∧ b iff a = a ∧ b, and for a lattice poset (P,≤), denote by ∧≤ the
operation a ∧≤ b = inf{a, b}. Define ≤∨ and ∨≤ analogously.

Then:

• For any lattice poset (P,≤), ≤∧≤ = ≤ and ≤∨≤ = ≤.

• For any lattice (L,∧,∨), ∧≤∧ = ∧ and ∨≤∨ = ∨.
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Thus the two definitions of lattices, either as a poset with additional properties or as
a universal algebra, are equivalent.

A lattice homomorphism ϕ : L0 → L1 between two lattices L0, L1 is a map that
preserves the meet and join operations, i.e. ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b) and ϕ(a ∨ b) =
ϕ(a) ∨ ϕ(b) for all a, b ∈ L0. An order homomorphism ϕ is a map that preserves the
order relation, i.e. a ≤ b ⇔ ϕ(a) ≤ ϕ(b) for all a, b ∈ L0. Because the definitions
of lattices as algebras and as orders are equivalent, a map between two lattices is a
lattice isomorphism iff it is an order isomorphism.

For elements a, b of a lattice L, we write a ≺ b and say that b covers a (a is covered
by b) if a < b and there does not exist any x ∈ L such that a < x < b. The order
relation ≤ in a finite lattice is fully characterized by its covering relation ([4], p. 6).
Accordingly, finite lattices are often represented by their Hasse diagram: a graph
in which elements of the lattice correspond to vertices, and for any a, b there is a
directed edge from a to b iff a ≺ b holds, drawn so that b is vertically above a. Since
< is the transitive closure of ≺ in a finite lattice, this completely characterizes the
lattice. Conversely, in an infinite lattice < may even be a strict total order while ≺
is empty, as in (Q,min,max). Figure 1.1 depicts the five non-isomorphic nonempty
lattices with up to four elements.

◦

◦

◦

◦

◦

◦

◦
◦
◦
◦ ◦

◦ ◦

◦

Figure 1.1: The Hasse diagrams of the five lattices with 1 ≤ n ≤ 4 elements

A chain is a lattice whose induced partial order is a total order. Clearly, in a chain
L, for any two elements a, b ∈ L, it holds that either a ∧ b = a and a ∨ b = b or that
a ∧ b = b and a ∨ b = a; conversely, if a, b are incomparable, then both a ∧ b and
a ∨ b are distinct from both a and b. It is obvious that all finite chains of any fixed
cardinality are isomorphic (both as lattices and as orders); their Hasse diagrams are
like the leftmost four diagrams in Figure 1.1.

We shall refer to the two-element chain (L = {0,1},0 < 1) as 2; it is the only
two-element lattice. 2n shall denote the n-th direct power of 2, i.e. the direct product
of n copies of 2.

1.2 Special classes of lattices

Modular lattices

A lattice (L,∧,∨) is called modular if it satisfies the identities

• ∀ a, b, c ∈ L : (a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ (a ∧ c)); (M1)

• ∀ a, b, c ∈ L : (a ∨ b) ∧ (a ∨ c) = a ∨ (b ∧ (a ∨ c)). (M2)
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In all lattices, (M1) holds with inequality ≤ and (M2) with ≥ ([4], p. 71), thus
modular lattices are characterized by the fact that the reverse inequalities also hold.

Modularity is a self-dual concept. In fact, only one of the two modular laws is
sufficient to characterize modularity, since they are both equivalent to the (self-dual)
condition

∀ a, b, c ∈ L : c ≤ a ⇒ (a ∧ b) ∨ c = a ∧ (b ∨ c) (ML)

called the modular law. The equivalence is proved in [4], pp. 72–73. If = is replaced
by ≤ in (ML), then the resulting statement, called the modular inequality, holds in
any lattice.

Modular lattices are a proper subclass of lattices, since the pentagon (Figure 1.2) is a
lattice which is not modular. Conversely, a lattice is modular iff it does not contain
the pentagon as a sublattice: in a nonmodular lattice, pick elements a, b, c such that
c ≤ a and (a ∧ b) ∨ c < a ∧ (b ∨ c); then the elements

b, a ∧ b, b ∨ c, (a ∧ b) ∨ c, a ∧ (b ∨ c)

are all distinct and form a pentagon (cf. [4], pp. 109–110). We show first that neither
c ≤ b nor b ≤ a can hold: for, if c ≤ b, then also c ≤ (a ∧ b) by our assumption
that c ≤ a, and therefore (a ∧ b) ∨ c = a ∧ b = a ∧ (b ∨ c), in contradiction to our
assumption that (a ∧ b) ∨ c ̸= a ∧ (b ∨ c). Similarly, if b ≤ a, then also (b ∨ c) ≤ a,
and in this case a∧ (b∨ c) = b∨ c = (a∧ b)∨ c, so the contradictory equality follows
again.

Now we can prove that a ∧ b, (a ∧ b) ∨ c, a ∧ (b ∨ c), b ∨ c form a four-element chain.
Clearly non-strict inequalities all hold. No two elements can be equal, because

• a ∧ b = (a ∧ b) ∨ c ⇒ c ≤ (a ∧ b) ⇒ c ≤ b;

• (a ∧ b) ∨ c ̸= a ∧ (b ∨ c) by assumption;

• a ∧ (b ∨ c) = b ∨ c ⇒ (b ∨ c) ≤ a ⇒ b ≤ a.

Also, a ∧ b, b, b ∨ c clearly form a three-element chain. The last piece of the proof is
to show that b is incomparable to both a ∧ (b ∨ c) and (a ∧ b) ∨ c. To this end, note
that if two elements are comparable, then their join is equal to one of them and so is
their meet. Consider

(
(a ∧ b) ∨ c

)
∨ b = (a ∧ b) ∨ (c ∨ b) = b ∨ c,

which is unequal to both b and (a ∧ b) ∨ c, and

b ∧
(
a ∧ (b ∨ c)

)
= (b ∧ a) ∧ (b ∨ c) = b ∧ a,

unequal to both b and a ∧ (b ∨ c).
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◦
◦

◦
◦

◦

Figure 1.2: The pentagon, characterizing modularity

Distributive lattices

A lattice (L,∧,∨) is called distributive if it satisfies the distributive laws

• ∀ a, b, c ∈ L : a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c); (D1)

• ∀ a, b, c ∈ L : a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). (D2)

In other words, we require that ∧ be distributive over ∨ and vice versa. Naturally,
this concept is self-dual. As with the modular law, inequality versions of these
identities hold in any lattice: the former with ≥ and the latter with ≤ ([4], p. 71).

The two distributive laws are equivalent to each other and to the self-dual condition

∀ a, b, c ∈ L : (a ∨ b) ∧ c ≤ a ∨ (b ∧ c). (DL)

A proof can be found in [4], p. 72.

All distributive lattices are modular, as can be seen by a direct computation:

a ∧ (b ∨ (a ∧ c))
= a ∧

(
(b ∨ a) ∧ (b ∨ c)

)
(distributivity)

= (a ∧ (b ∨ a)) ∧ (b ∨ c) (associativity)
= a ∧ (b ∨ c) (absorption)
= (a ∧ b) ∨ (a ∧ c). (distributivity)

The converse is not true: distributive lattices form a proper subclass of modular
lattices. The diamond (Figure 1.3) plays a similar role for distributive lattices as the
pentagon for modular lattices: a modular lattice is distributive iff it does not contain
the diamond as a sublattice. Evidently, the diamond is not distributive; for a proof of
the converse, take a modular nondistributive lattice with a∧ (b∨ c) > (a∧ b)∨ (a∧ c),
then the following elements form a diamond (cf. [4], p. 85 and pp. 109–111):

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) =: u,
(a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a) =: v,

(a ∧ v) ∨ u, (b ∧ v) ∨ u, (c ∧ v) ∨ u.
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◦

◦ ◦ ◦

◦

Figure 1.3: The diamond, characterizing distributivity

Complete lattices

For lattices seen as orders, the condition that every set of the form {a, b} with a, b ∈ L
(that is, all one- and two-element sets) must have an infimum and a supremum is
equivalent to the much more natural condition that any finite nonempty set must
have an infimum and a supremum. One direction is trivial; the other one is due to
induction on a kind of associative property of infima and suprema: for all a, b, c ∈ L,

inf{inf{a, b}, c} = inf{a, b, c} = inf{a, inf{b, c}},

and similarly for sup (see [4], pp. 9–10). Because ∧ is also associative, the infimum
of every finite nonempty set coincides with its meet, defined inductively:

∧
{x0} = x0;

∧
{x0, x1, . . . , xn} =

∧
{x0, x1, . . . , xn−1} ∧ xn.

The join of a finite nonempty set is defined similarly, and is equal to the supremum.

A lattice in which every subset has an infimum and a supremum is called a complete
lattice. The concept of completeness is self-dual. From now on we shall write

∧
A

for inf A and
∨
A for supA for arbitrary subsets A of a lattice L, and use these as

definitions of meets and joins over arbitrary subsets of a complete lattice.

The empty set satisfies
∧

∅ =
∨
L and

∨
∅ =

∧
L, if they exist:

∧
∅ is an element

x satisfying x ≤ y for all y ∈ ∅ and x ≥ t for all t ∈ L satisfying t ≤ y for all y ∈ ∅;
because of the vacuous universal quantifiers, this simplifies to x ≥ t for all t ∈ L,
which means x =

∨
L. This implies every finite lattice is complete.

Bounded lattices

An element 0 of a lattice (L,∧,∨) is called a zero if 0 ≤ a holds for all a ∈ L.
Similarly, an element 1 is called a unit if a ≤ 1 holds for all a ∈ L. By antisymmetry,
zeros and units are unique if they exist. If the zero and unit are equal in a lattice,
then by antisymmetry, the lattice has precisely the one element which is both the
zero and the unit. Since the inequalities defining 0 and 1 imply

a ∧ 0 = 0, a ∨ 0 = a, a ∧ 1 = a, a ∨ 1 = 1

for all a ∈ L, this makes 0 the absorbing element of ∧ and the neutral element of ∨,
and 1 the absorbing element of ∨ and the neutral element of ∧. Since 0 ≤ a holds
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for all a ∈ L, the conditions 0 = a and 0 ≥ a are equivalent for any a ∈ L; likewise,
1 = a and 1 ≤ a are equivalent.

Clearly, lattices may have “zero divisors” for the meet operation: there may exist
nonzero elements a, b such that a ∧ b = 0, as in the rightmost lattice of Figure 1.1.
On the other hand, for the join operation, not only do lattices lack “zero divisors”,
but an even stronger condition holds: if two elements a and b of a lattice with a zero
satisfy a ∨ b = 0, then it follows that both a = 0 and b = 0. For a proof, simply
consider that 0 = a ∨ b ≥ a, so a ≤ 0, which is equivalent to a = 0; by symmetry,
b = 0. Dually, if a ∧ b = 1, then a = 1 and b = 1.

A lattice which has both a zero and a unit is called a bounded lattice. Evidently,
0 and 1 are dual to each other, and boundedness is a self-dual concept. Every
complete lattice L is bounded, since the zero and unit are given by 0 =

∧
L =

∨
∅

and 1 =
∨
L =

∧
∅ respectively. In particular, every finite lattice is bounded. The

family of clopen sets of any topological space, equipped with the operations ∩ and
∪, forms a bounded lattice which in general is not complete.

In a bounded lattice, an atom is an element that covers 0; a co-atom is covered by 1.
A complement of an element x is an element x̃ such that x∧ x̃ = 0 and x∨ x̃ = 1. A
complement of an element may not exist, as is the case for the middle element of the
three-element chain; or a single element may have multiple complements, as in the
diamond, where every non-zero, non-unit element has two complements.

Bounded lattices can also be seen as universal algebras (L,∧,∨,0,1) with two
additional nullary operations 0 and 1 that return the zero and the unit, respectively.
By such a definition, the class of bounded lattices forms a variety.

1.3 Ortholattices
An ortholattice is a bounded lattice (L,∧,∨, 0, 1) with an additional unary operation
′, called orthocomplementation, which satisfies the axioms

• ∀ a ∈ L : a ∧ a′ = 0; (O1)

• ∀ a ∈ L : a ∨ a′ = 1; (O2)

• ∀ a ∈ L : a′′ = a; (O3)

• ∀ a, b ∈ L : a ≤ b ⇒ a′ ≥ b′. (O4)

(O1) and (O2) imply that a′ is a complement of a, so every element of an ortholattice
has at least one complement. (O4) shows that 0′ = 1 and 1′ = 0. (O3) shows that ′

is a bijection; also, it turns the implication in (O4) into an equivalence and makes
the operation ′ self-dual. This equivalence implies that for any subset A of L with
A′ := {a′ | a ∈ A},

∧
A′ = inf A′ exists iff

∨
A = supA exists and they are equal;

likewise,
∨
A′ = supA′ exists iff

∧
A = inf A exists and they are equal ([6], p. 17).

Thus, (O4) implies the De Morgan laws : for all a, b ∈ L,

(a ∧ b)′ = a′ ∨ b′ and (a ∨ b)′ = a′ ∧ b′. (DML)

8



Conversely, the De Morgan laws imply (O4), since a ≤ b implies a ∨ b = b and
therefore b′ = (a ∨ b)′ = a′ ∧ b′ ≤ a′ ([1], pp. 30–31). Thus, the De Morgan laws
also imply each other, and ortholattices can be characterized through equations
only, therefore the class of ortholattices is a variety. (O4) is known as the antitone
property ; it extends also to the strict order < and the covering relation ≺, and it
implies that ′ maps atoms to co-atoms and vice versa.

In an ortholattice L, the relation {(a, b) ∈ L2 | a = b or a = b′} is an equivalence
relation. Clearly its equivalence classes have at most two elements. If for some
element a ∈ L the equivalence class has only one element, i.e. it holds that a = a′,
then 0 = a ∧ a′ = a ∧ a = a = a′ = a′ ∨ a′ = a ∨ a′ = 1, so the entire lattice
has only one element. Therefore, every finite ortholattice has either one element
or else an even number of elements. The mapping a 7→ a′ is an isomorphism
of the ortholattice (L,∧,∨,0,1, ′) onto the dual lattice (L,∨,∧,1,0, ′), so every
ortholattice is isomorphic to its dual. This is not the case for general bounded
lattices, as the pair of bounded lattices in Figure 1.4 demonstrates.

◦

◦

◦ ◦

◦

◦

◦ ◦

◦

◦

Figure 1.4: A pair of mutually dual, non-isomorphic bounded lattices

If a ≤ a′ holds in an ortholattice for some element a, then a = a ∧ a′ = 0; so
in particular ∃a : a ≺ a′ is true only in 2. Thus the only ortholattices in which
a′ = b does not imply a ̸= b and a ⊀ b are the one- and two-element ortholattices.
Accordingly, we shall represent finite ortholattices with more than two elements
through extended Hasse diagrams in which a solid line represents covering and a
dashed line connects pairs of non-zero, non-unit orthocomplements, as in Figure 1.5,
representing the ortholattice 22. In larger Hasse diagrams, we shall omit indicating
orthocomplementation when it can be uniquely deduced from the axioms (O1)–(O4).

◦

◦ ◦

◦

Figure 1.5: 22, the smallest ortholattice with more than two elements

A distributive ortholattice is called a Boolean algebra. The well-known Stone’s
representation theorem for Boolean algebras states that, for all Boolean algebras
B, there exists a set S such that B can be embedded in the Boolean algebra
(P(S),∩,∪,∅, S,X 7→ S \X) via an injective homomorphism, and that for finite
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Boolean algebras this homomorphism is bijective. Thus in particular every Boolean
algebra is isomorphic to a subalgebra of 2I for some index set I, and every finite
Boolean algebra is isomorphic to 2n for some n ∈ N. In particular, the cardinality of
every finite Boolean algebra is a power of two. Thus Boolean algebras are the most
well-behaved ortholattices. This is elucidated by the fact that 2 must be a member
of every nontrivial variety of ortholattices, and 2 generates all the Boolean algebras
through subalgebras and direct products, so the class of Boolean algebras covers the
trivial class in the lattice of varieties of ortholattices ([6], pp. 121–123).

If an ortholattice is a Boolean algebra, then x′ is the only complement of any element
x, i.e. if some element x̃ satisfies x ∧ x̃ = 0 and x ∨ x̃ = 1, then x̃ = x′. For a proof,
let x̃ be a complement of x in a Boolean algebra, then x′ = x′ ∧ 1 = x′ ∧ (x ∨ x̃),
which by the distributive laws equals (x′ ∧ x) ∨ (x′ ∧ x̃) = 0 ∨ (x′ ∧ x̃) = x′ ∧ x̃, thus
overall x′ = x′ ∧ x̃, which means x′ ≤ x̃; with the dual argument, one shows x′ ≥ x̃
and therefore x′ = x̃ by antisymmetry ([4], p. 97).

The same proper inclusion chain “lattice ⊃ modular lattice ⊃ distributive lattice”
also holds for ortholattices: not all ortholattices are modular, and not all modular
ortholattices are distributive. An example of a nondistributive modular ortholattice
is the lattice MO2 or Chinese lantern of Figure 1.6, and an example of a nonmodular
ortholattice is the lattice O6 or benzene ring of Figure 1.7.

◦

◦ ◦ ◦ ◦

◦

Figure 1.6: MO2, a nondistributive modular ortholattice

◦
◦

◦

◦

◦
◦

Figure 1.7: O6, a nonmodular ortholattice

1.4 Orthomodular lattices
There is yet another variety of ortholattices which is contained strictly between
the class of all ortholattices and the class of modular ortholattices, namely the
orthomodular lattices. We shall see that while O6 does not characterize modularity
for ortholattices, it does characterize the weaker condition of orthomodularity. On
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the other hand, MO2 plays an important role for subalgebras of orthomodular lattices
generated by two elements.

An orthomodular lattice is an ortholattice which additionally satisfies the identities

∀ a, b ∈ L : a ∧ (a′ ∨ (a ∧ b)) = a ∧ b, a ∨ (a′ ∧ (a ∨ b)) = a ∨ b. (OM)

As with modularity and distributivity, these mutually dual identities imply each
other; thus, only one is necessary and orthomodularity is self-dual. However, unlike
with modularity and distributivity, the proof is even simpler in this case, since every
ortholattice is isomorphic to its dual via orthocomplementation.

The two identities are both equivalent to the pair of mutually dual conditions

∀ a, b ∈ L :

{
a ≤ b ⇒ a ∨ (a′ ∧ b) = b,

a ≥ b ⇒ a ∧ (a′ ∨ b) = b
(OML)

of which the version with ≤ is called the orthomodular law. To prove that (OM)
implies (OML), note simply that a ≤ b implies b = a ∨ b and thus a ∨ (a′ ∧ b) =
a ∨

(
a′ ∧ (a ∨ b)

)
= a ∨ b = b. The converse implication follows from simply noticing

that for any two a, b ∈ L, we have a ≤ a ∨ b.

Another common characterization of orthomodularity ([6], pp. 22–23) is either of
the dual conditions

∀ a, b ∈ L :

{
(a ≤ b and b ∧ a′ = 0) ⇒ a = b,

(a ≥ b and b ∨ a′ = 1) ⇒ a = b.
(OML*)

To prove (OML) implies (OML*), let a, b ∈ L be such that a ≤ b and b∧a′ = 0; then
on the one hand a∨(a′∧b) = b by (OML), but on the other hand a∨(a′∧b) = a∨0 = a,
thus a = b. Conversely, let a ≤ b; then, since also a′ ∧ b ≤ b holds, we have
a ∨ (a′ ∧ b) ≤ b; moreover,

b ∧
(
a ∨ (a′ ∧ b)

)′
= b ∧

(
a′ ∧ (a′ ∧ b)

)′
= (a′ ∧ b) ∧ (a′ ∧ b)′ = 0,

thus, by (OML*), a ∨ (a′ ∧ b) = b, proving (OML).

Every modular ortholattice is an orthomodular lattice, since by the modular law,
a ≤ b implies (b ∧ a′) ∨ a = b ∧ (a′ ∨ a) = b ∧ 1 = b. However, as mentioned
above, an orthomodular lattice is not the same thing as a modular ortholattice:
orthomodularity is a strictly weaker condition than modularity. Figure 2.1, given
in [1], p. 42, is an example of an orthomodular lattice which is not modular, as it
contains the pentagon as a sublattice.

The benzene ring characterizes orthomodularity among ortholattices. Clearly it is not
orthomodular; conversely, suppose L is not orthomodular, then there are elements
s, t such that s ≤ t, t∧ s′ = 0 and yet s ̸= t. Then the elements 0, s, s′, t, t′, 1 form a
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benzene ring ([1], p. 54). Firstly s ≤ t and s ̸= t imply s < t; by (O4), s′ ≥ t′, and
because ′ is bijective, s′ ̸= t′; thus s′ > t′. Thus we have the inequality chains

0 ≤ s < t ≤ 1; 0 ≤ t′ < s′ ≤ 1.

We first show that all inequalities here are strict: if 0 = s, equivalently s′ = 1, then
on the one hand t ∧ s′ = 0 by assumption, but on the other hand t ∧ s′ = t ∧ 1 = t,
thus s = 0 = t, in contradiction to s ̸= t. Likewise, if 0 = t′, or t = 1, then
0 = t ∧ s′ = 1 ∧ s′ = s′, contradicting s′ ̸= t′.

Finally, we need to show none of the following pairs are comparable:

(s, s′), (s, t′), (t, s′), (t, t′).

If any element u was comparable with its complement, then either u = 0 or u = 1,
which we have ruled out for all of s, t, s′, t′. If t and s′ were comparable, then s and
t′ would also be comparable, and vice versa; in both cases t ∧ s′ would have to be
equal to either t or s′, but by assumption it is equal to 0. Thus 0, s, s′, t, t′, 1 form a
benzene ring, as desired.
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Chapter 2

Structure of Orthomodular Lattices

2.1 Commutativity
The relation x commutes with y, written xCy, for two elements x and y of an
ortholattice L is defined as

xCy iff x = (x ∧ y) ∨ (x ∧ y′).

We shall write xC ′y and read x dually commutes with y for the dual relation, obtained
by exchanging ∧ and ∨. Similarly, xC̃y shall denote the converse relation, i.e. yCx.
An element c is called central in L if xCc holds for all x ∈ L.

We begin with a few elementary remarks. The relations C and C ′ are not empty, as
for any element x ∈ L it holds that 0Cx, 1Cx, xC0, and xC1, and all of the above
with C ′ in place of C. The relation C is a superset of ≤, since for any two elements
x, y ∈ L, x ≤ y implies (x ∧ y) ∨ (x ∧ y′) = x ∨ (x ∧ y′) = x by absorption. Similarly,
C ′ is a superset of ≥. In particular, both C and C ′ are reflexive. Moreover, for any
two elements x, y ∈ L, xCy trivially implies xCy′, and likewise for C ′. In particular,
every element commutes and dually commutes with its complement. Finally, the
notation C ′ for the dual of C is motivated by the equivalence xC ′y ⇔ x′Cy′ for all
x, y ∈ L, which follows from the De Morgan laws.

However, C is generally not symmetric nor transitive, and C and C ′ are in general
different relations. It is a defining characteristic of orthomodular lattices in particular
that C agrees with C ′ and both are symmetric.

Theorem 2.1.1 ([1], pp. 45–46). In any ortholattice L the following conditions are
all equivalent:

(i) L is orthomodular;

(ii) C = C̃ ′;

(iii) C = C ′;

(iv) C = C̃.

13



Proof.

• (i) ⇒ (ii): Assume xCy, so x = (x ∧ y) ∨ (x ∧ y′). By the absorption law,
x ∨ y = y ∨ (y ∧ x) ∨ (y′ ∧ x) = y ∨ (y′ ∧ x). Now define

a := y; b := (y ∨ x) ∧ (y ∨ x′).

It suffices to show that a and b are equal, as this will prove xCy implies yC ′x;
the converse implication is equivalent. To this end we note first that

a ∧ b = y ∧ (y ∨ x) ∧ (y ∨ x′) = y ∧ (y ∨ x′) = y = a

by applying the absorption law twice, so that a ≤ b; and secondly,

b ∧ a′ = (y ∨ x) ∧ (y ∨ x′) ∧ y′

= (y ∨ x) ∧ (y′ ∧ x)′ ∧ y′

= (y ∨ x) ∧
(
(y′ ∧ x) ∨ y

)′
= (x ∨ y) ∧ (x ∨ y)′

= 0.

Now the conditions of (OML*) are met and it follows that a = b.

• (ii) ⇒ (iii): By assumption and the elementary remarks we obtain

xCy ⇒ xCy′ ⇒ y′C ′x ⇒ y′C ′x′
(ii)
==⇒ x′Cy′ ⇒ xC ′y.

• (i) ⇒ (iv): From what was proven so far, orthomodularity implies C = C̃ ′ and
C = C ′. Then

xCy ⇒ yC ′x ⇒ yCx.

• (iii) ⇒ (i): Suppose C = C ′ and take two elements a, b ∈ L such that a ≤ b.
Then bC ′a, which by assumption implies bCa, which together with a ≤ b gives
b = (b ∧ a) ∨ (b ∧ a′) = a ∨ (a′ ∧ b). By (OML), L is orthomodular.

• (iv) ⇒ (i): Suppose C = C̃ and take a ≤ b, which implies aCb. By assumption,
bCa follows, and this along with a ≤ b implies orthomodularity just like in the
point above.

Corollary 2.1.2. In an orthomodular lattice L and x, y ∈ L, for all

x, x̂ ∈ {x, x′}, y, ŷ ∈ {y, y′}, C, Ĉ ∈ {C,C ′, C̃, C̃ ′},

xCy is equivalent to x̂Ĉŷ.

A crucial property of commutativity in orthomodular lattices is given by the
Foulis–Holland theorem: commutativity between triplets of elements implies their
distributivity.
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Theorem 2.1.3 (weak Foulis–Holland; [1], pp. 47–49). Let L be an orthomodular
lattice and a, b, c ∈ L. If one of a, b, c commutes with the other two (e.g. aCb and
aCc), then any permutation of a, b, c satisfies the distributive laws.

Proof. Let aCb and aCc. We need to verify twelve distributive identities: two for
each of the six permutations of a, b, c. However, we can reduce the work. Define

D∧(a, b, c) ⇔ a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
D∨(a, b, c) ⇔ a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

Then, in any distributive identity involving a, b, c, we can always exchange the
rightmost and middle elements by the fact that ∧ and ∨ are commutative, and we
can always exchange b and c by exchanging their roles, since the assumptions are
symmetric in b and c. Overall, this lets us reduce the six permutations to just two:
specifically, for ♢ ∈ {∧,∨},

D♢(a, b, c) ⇔ D♢(a, c, b); D♢(b, c, a) ⇔ D♢(b, a, c) ⇔ D♢(c, a, b) ⇔ D♢(c, b, a),

reducing the number of identities from twelve to four. Moreover, the assumption
aCb and aCc also implies a′Cb′ and a′Cc′ by Theorem 2.1.1; thus, defining ∧′ = ∨
and ∨′ = ∧,

D♢(a
′, b′, c′) ⇔ D♢′(a, b, c),

so that the dual identities follow by considering a′, b′, c′. This leaves only two identities
to prove (e.g. D∧(a, b, c) and D∧(b, a, c)), which we now proceed to do.

(i) D∧(a, b, c): Define

x := (a ∧ b) ∨ (a ∧ c) and y := a ∧ (b ∨ c).

In any lattice x ≤ y holds (cf. [4], p. 71). We will show that y ∧ x′ = 0, so
that we may apply (OML*) to obtain x = y.
By assumption, aCb and therefore b′C ′a by Theorem 2.1.1. Therefore

a ∧ b′ = a ∧ (b′ ∨ a) ∧ (b′ ∨ a′) = a ∧ (b′ ∨ a′)

by absorption. Similarly, aCc, so that a ∧ c′ = a ∧ (c′ ∨ a′). Now

x′ ∧ y =
(
(a ∧ b) ∨ (a ∧ c)

)′ ∧ a ∧ (b ∨ c)
= (a ∧ b)′ ∧ (a ∧ c)′ ∧ a ∧ (b ∨ c)
= (a′ ∨ b′) ∧ (a′ ∨ c′) ∧ a︸ ︷︷ ︸

=a∧c′

∧ (b ∨ c)

= (a′ ∨ b′) ∧ a︸ ︷︷ ︸
=a∧b′

∧ c′ ∧ (b ∨ c)

= a ∧ b′ ∧ c′ ∧ (b ∨ c)
= a ∧ (b ∨ c)′ ∧ (b ∨ c)
= a ∧ 0
= 0.

15



(ii) D∧(b, a, c): By a similar argument, defining this time

x := (b ∧ a) ∨ (b ∧ c) and y := b ∧ (a ∨ c),

using aCb to conclude a′C ′b and therefore (a′ ∨ b′) ∧ b = a′ ∧ b, and using aCc
to conclude cC ′a and therefore a′ ∧ (a∨ c) = a′ ∧ c, one obtains using the same
sequence of steps as above that x′ ∧ y = 0.

An important consequence of the Foulis–Holland theorem is that in orthomodular
lattices, C is compatible not only with ′, but also with ∧ and ∨:

Theorem 2.1.4 ([1], pp. 49–50). Let L be an orthomodular lattice and a, b, c ∈ L.
If aCb and aCc, then also aC(b ∧ c) and aC(b ∨ c).

Proof. Observe that if one of the assertions is proved, the other one follows, since
for ♢ ∈ {∧,∨}, assuming (aCb and aCc) ⇒ aC(b♢ c) is proved, we have

(aCb and aCc) ⇒ (aCb′ and aCc′) ⇒ aC(b′ ♢ c′) ⇒ aC(b♢′ c)′ ⇒ aC(b♢′ c)

using the notation from the proof of Theorem 2.1.3. It therefore suffices to show one
of the two assertions; we will show aC(b ∨ c). Assume therefore aCb and aCc, then
the condition of Theorem 2.1.3 is satisfied, so a, b, c are distributive; moreover, since
also a′Cb and a′Cc, we get that a′, b, c are distributive; finally, we also have bCa and
cCa. Putting all that together, we obtain(

(b ∨ c) ∧ a
)
∨
(
(b ∨ c) ∧ a′

)
= (b ∧ a) ∨ (c ∧ a ) ∨ (b ∧ a′) ∨ (c ∧ a′)
= (b ∧ a) ∨ (b ∧ a′) ∨ (c ∧ a ) ∨ (c ∧ a′)
= b ∨ c,

thus (b ∨ c)Ca and therefore aC(b ∨ c).

By an inductive argument and by applying C = C̃ we come to the following corollary:

Corollary 2.1.5 ([1], p. 51). In an orthomodular lattice, if for some natural numbers
n,m all elements ai for all i ∈ {0, 1, . . . , n− 1} commute with all elements bj for all
j ∈ {0, 1, . . . ,m− 1}, then all elements of the form

p(a0, a1, . . . , an−1), q(b0, b1, . . . , bm−1)

also commute, where p and q are n-ary and m-ary functions defined by terms in n
and m variables and the operations ∧, ∨, and ′.

The significance of the above corollary is that elements of the form p(x0, x1, . . . , xn−1)
for some natural number n and some n-ary function p defined by a term in ∧, ∨, and
′ are precisely the elements of a subalgebra generated by the elements x0, x1, . . . , xn−1.
Therefore, if we can find a generating set for a subalgebra of an orthomodular lattice
in which every element commutes with every other, then every element of the whole
subalgebra commutes with every other.
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2.2 Characterization of Boolean algebras
We know that an ortholattice is a Boolean algebra iff it is distributive. The following
Theorem 2.2.1 allows for an alternative characterization of Boolean algebras among
ortholattices through the commutativity relation.

Theorem 2.2.1 ([1], p. 65). In any ortholattice L the statements (i)-(iv) are all
equivalent:

(i) C = L2;

(ii) C is an equivalence relation;

(iii) C is transitive;

(iv) L is a Boolean algebra.

Proof. (i) ⇒ (ii) ⇒ (iii) is trivial. For (iii) ⇒ (i), note merely that aC0 and 0Cb
hold for any a, b, so by transitivity aCb.

For (iv) ⇒ (i), assume L is distributive, then for any two elements a, b we have

a = a ∧ 1 = a ∧ (b ∨ b′) = (a ∧ b) ∨ (a ∧ b′),

thus aCb, proving C = L2.

For (i) ⇒ (iv), suppose that C = L2; then in particular C is symmetric, so L
is orthomodular and we can apply Theorem 2.1.3; since for any three elements
a, b, c we have aCb and aCc, all distributive identities between a, b, c hold and L is
distributive.

Another characterization of Boolean algebras is through uniqueness of complements.
While general bounded lattices may not have complements for every element, and
ortholattices only ensure the existence of at least one complement of every element x
(namely x′), Boolean algebras always have exactly the one complement x′ for every
element x. What’s interesting is that the converse also holds; and it allows to single
out Boolean algebras from all ortholattices. We first need an auxiliary result.

Theorem 2.2.2 ([6], pp. 25–26). In an ortholattice L the complements of an element
x are all of the form (

y ∧ (y′ ∨ x′)
)
∨ (y′ ∧ x′),

where y ∈ L. If L is orthomodular, then the converse also holds, i.e. for every y ∈ L,
elements of this form are complements of x.

Proof. We show first that all complements of x are of this form. Let x̃ be a complement
of x, then by the De Morgan laws x̃′ is a complement of x′ and thus(

x̃ ∧ (x̃′ ∨ x′)
)
∨ (x̃′ ∧ x′) = (x̃ ∧ 1) ∨ 0 = x̃,

thus x̃ is of the required form with y = x̃.
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We now show that if L is orthomodular, then all elements of this form are complements
of x. First we prove that, for all y, the meet of

(
y ∧ (y′ ∨ x′)

)
∨ (y′ ∧ x′) with x is 0.

We apply a technique known as focusing : in an expression of the form (a ∧ b) ∨ c or
(a∨b)∧c, we identify one of a, b, c which commutes with the other two, so that we may
apply distributivity by Theorem 2.1.3. In our case, in

((
y ∧ (y′ ∨ x′)

)
∨ (y′ ∧ x′)

)
∧ x,

y′ ∧ x′ commutes with both x and y ∧ (y′ ∨ x′), thus we can apply distributivity:((
y ∧ (y′ ∨ x′)

)
∨ (y′ ∧ x′)

)
∧ x

=
((
y ∧ (y′ ∨ x′)

)
∧ x

)
∨
(
(y′ ∧ x′) ∧ x

)
=

(
(y ∧ x) ∧ (y ∧ x)′︸ ︷︷ ︸

=0

)
∨
(
y′ ∧ (x′ ∧ x)︸ ︷︷ ︸

=0

)
= 0 ∨ (y′ ∧ 0)

= 0 ∨ 0

= 0.

Next we show that the join is 1. Here we focus on y′ ∨ x′, which commutes with
both y and x: ((

y ∧ (y′ ∨ x′)
)
∨ (y′ ∧ x′)

)
∨ x

=
((
y ∧ (y′ ∨ x′)

)
∨ x

)
∨ (y′ ∧ x′)

=
(
(y ∨ x) ∧

(
(y′ ∨ x′) ∨ x)︸ ︷︷ ︸

=1

))
∨ (y′ ∧ x′)

=
(
(y ∨ x) ∧ 1

)
∨ (y′ ∧ x′)

= (y ∨ x) ∨ (y ∨ x)′

= 1.

We can now prove that Boolean lattices are exactly the uniquely complemented
ortholattices:

Theorem 2.2.3 ([6], p. 26). An ortholattice L is Boolean iff every element x has
exactly one complement, namely x′.

Proof.

• (⇒): This has been proved already in a remark in Chapter 1. For an alternative
proof using Theorem 2.2.2, note that every complement of x is of the form
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(
y ∧ (y′ ∨ x′)

)
∨ (y′ ∧ x′) and then the distributive laws imply(

y ∧ (y′ ∨ x′)
)
∨ (y′ ∧ x′)

=
(
(y ∧ y′)︸ ︷︷ ︸

=0

∨ (y ∧ x′)
)
∨ (y′ ∧ x′)

= (y ∧ x′) ∨ (y′ ∧ x′)
= (y ∨ y′)︸ ︷︷ ︸

=1

∧ x′

= x′.

• (⇐): Suppose now that for all x ∈ L, x′ is the only complement of x.

We first show that L is orthomodular. Let x, y ∈ L be such that x ≤ y and
y∧x′ = 0; we will show x = y. Note that x ≤ y implies x = x∧y and therefore
x ∧ y′ = (x ∧ y) ∧ y′ = x ∧ (y ∧ y′) = x ∧ 0 = 0; on the other hand, y ∧ x′ = 0
implies, by taking complements, that x∨ y′ = 1. Thus y′ is a complement of x,
and so, by the hypothesis of unique complements, y′ = x′ and thus y = x.

Now that it has been established that L is orthomodular, we can apply Theorems
2.1.3, 2.2.1, and 2.2.2. We know all complements of x are precisely the elements
of the form

(
y ∧ (y′ ∨ x′)

)
∨ (y′ ∧ x′) for arbitrary y; thus, by the hypothesis of

unique complements, (
y ∧ (y′ ∨ x′)

)
∨ (y′ ∧ x′) = x′

holds for any x, y ∈ L. Let therefore x, y ∈ L be arbitrary; we will prove yCx,
from which it will follow that C = L2 and therefore that L is Boolean.

First, take the meet with y on both sides:

y ∧
((
y ∧ (y′ ∨ x′)

)
∨ (y′ ∧ x′)

)
= y ∧ x′.

Now we focus on y, which commutes with both y∧ (y′ ∨x′) and with (y∨x)′ =
y′ ∧ x′:

y ∧
((
y ∧ (y′ ∨ x′)

)
∨ (y′ ∧ x′)

)
=

(
y ∧ y︸ ︷︷ ︸
=y

∧ (y′ ∨ x′)
)
∨ (y ∧ y′︸ ︷︷ ︸

=0

∧ x′)

=
(
y ∧ (y′ ∨ x′)

)
∨ (0 ∧ x′)

=
(
y ∧ (y′ ∨ x′)

)
∨ 0

= y ∧ (y′ ∨ x′).

Thus we have y ∧ (y′ ∨ x′) = y ∧ x′. Now take the join with y ∧ x on both sides:(
y ∧ (y′ ∨ x′)

)
∨ (y ∧ x) = (y ∧ x′) ∨ (y ∧ x).
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Now if we can show that the term on the left-hand side is equal to y, then we
will have proven yCx. We use the orthomodular law:

a ≤ b ⇒ a ∨ (a′ ∧ b) = b.

Define a := y ∧ x and b := y; then a ≤ b is satisfied, and so(
y ∧ (y′ ∨ x′)

)
∨ (y ∧ x) = (b ∧ a′) ∨ a = b.

Therefore we conclude y = (y ∧ x) ∨ (y ∧ x′), thus yCx.

Remark: Another relation which can be seen as a measure of distributivity in
ortholattices is the relation of perspectivity, defined as follows: In a bounded lattice
L with a, b ∈ L, a is perspective to b (written a ∼ b) if a and b have a common
complement, i.e. there exists c ∈ L such that a∧ c = 0 = b∧ c and a∨ c = 1 = b∨ c.
In light of the above Theorem 2.2.3, we have the following corollary:

Corollary 2.2.4 ([6], p. 73). An ortholattice is Boolean iff ∼ is the identity relation,
i.e. (∼) = {(x, x) | x ∈ L}.

2.3 Intervals
For a lattice L and a, b ∈ L, a ≤ b, the interval [a, b] is the subset {x ∈ L | a ≤ x ≤ b}.
(Unlike its notation may suggest, an interval of L need not be a chain if L is not
one.) By the properties of the induced partial order and by its transitivity, for all
x, y ∈ L we have

a ≤ x ≤ b and a ≤ y ≤ b ⇒ a ≤ (x ∧ y) ≤ b and a ≤ (x ∨ y) ≤ b,

thus [a, b] is a sublattice of L. Note that, of course, intervals of ortholattices are
generally not closed under orthocomplementation: in any non-trivial ortholattice,
the interval [0,0] = {0} does not contain 0′ = 1. Intervals of ortholattices can even
have a structure where no unary operation could be an orthocomplementation: take
for instance the three-element interval [0, t] = {0, s, t} of the benzene ring.

However, under additional assumptions, one can define a new orthocomplementation
on intervals of L. Let a, b ∈ L, a ≤ b and define the operations

xa↑b := (a ∨ x′) ∧ b; xa↓b := a ∨ (x′ ∧ b).

The interval [a, b] is closed under both: for all x ∈ [a, b], xa↑b ≤ b because xa↑b is a
meet with b, and xa↑b ≥ a because it is equal to

xa↑b = (a ∨ x′) ∧ b = (a ∨ x′) ∧ (a ∨ b),
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the meet of two elements which are both joins with a. The proof for xa↓b is analogous.
The next theorem states that if these two operations are equal on [a, b], and under
additional conditions of commutativity, they define an orthocomplementation on
[a, b] that makes it an ortholattice.

Theorem 2.3.1 (cf. [1], pp. 55–57). Let (L,∧,∨,0,1, ′) be an ortholattice and
a, b ∈ L with a ≤ b. If for all x ∈ [a, b], xa↑b = xa↓b (we shall write xa|b for both),
and x both commutes and dually commutes with both a and b, then the algebra
([a, b],∧,∨, a, b, a|b) is an ortholattice. In particular, both additional conditions are
fulfilled if L is orthomodular, in which case ([a, b],∧,∨, a, b, a|b) is also orthomodular.

Proof.

• (O1): Because x ∈ [a, b],

x ∧ xa|b = x ∧ ((a ∨ x′) ∧ b) = (x ∧ b) ∧ (x′ ∨ a) = x ∧ (x′ ∨ a).

Because both x and xa|b are in [a, b], and intervals are closed under joins and
meets, x ∧ (x′ ∨ a) is also in [a, b], thus it commutes with a:

x ∧ (x′ ∨ a)
=

(
x ∧ (x′ ∨ a) ∧ a

)
∨
(
x ∧ (x′ ∨ a) ∧ a′

)
=

(
(x ∧ a) ∧ (a ∨ x′)

)
∨
(
(x ∧ a′) ∧ (x′ ∨ a)

)
=

(
a ∧ (a ∨ x′)︸ ︷︷ ︸

=a

)
∨
(
(x′ ∨ a)′ ∧ (x′ ∨ a)︸ ︷︷ ︸

=0

)
= a ∨ 0

= a.

Thus x ∧ xa|b = a, proving (O1).

• (O2): Similarly,

x ∨ xa|b = x ∨ (a ∨ (x′ ∧ b)) = (x ∨ a) ∨ (x′ ∧ b) = x ∨ (x′ ∧ b).

A similar argument as above, considering that x ∨ (x′ ∧ b) dually commutes
with b, shows that it is equal to b, thus x ∨ xa|b = b, proving (O2).

• (O3): Note that, because all x ∈ [a, b] commute with a,

a ∨ (a′ ∧ x) = (a ∧ x) ∨ (a′ ∧ x) = (x ∧ a) ∨ (x ∧ a′) = x.

Similarly, since all x dually commute with b,

b ∧ (b′ ∨ x) = (b ∨ x) ∧ (b′ ∨ x) = (x ∨ b) ∧ (x′ ∨ b) = x.

Therefore,

(xa|b)a|b =
(
a ∨

(
(a ∨ x′) ∧ b

)′) ∧ b

=
(
a ∨ (a ∨ x′)′ ∨ b′

)
∧ b

=
(
a ∨ (a′ ∧ x) ∨ b′

)
∧ b

= (x ∨ b′) ∧ b
= x.
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• (O4): If x ≤ y, then

x′ ≥ y′;

x′ ∧ b ≥ y′ ∧ b;
a ∨ (x′ ∧ b) ≥ a ∨ (y′ ∧ b)

by the isotone property of the lattice order. Thus xa|b ≥ ya|b.

• Orthomodularity of L implies the conditions of the theorem:
a ≤ x ≤ b implies aCx and xCb, which by orthomodularity implies all of xCa,
xC ′a, xCb, xC ′b, which is the second condition. Also, a ≤ x ≤ b implies that
a commutes with both x′ and b, thus from distributivity we conclude

xa↑b = (a ∨ x′) ∧ b = (a ∨ x′) ∧ (a ∨ b) = a ∨ (x′ ∧ b) = xa↓b.

• Orthomodularity of L implies orthomodularity of [a, b]:
We show (OML). For x, y ∈ [a, b], assume x ≤ y. Then xCy and thus yCx′.
Also, because a ≤ y, we have aCy and yCa; finally, by Theorem 2.1.4, yC(a∨x′).
We focus on y:

x ∨ (xa|b ∧ y)
= x ∨

((
(a ∨ x′) ∧ b

)
∧ y

)
= x ∨

(
(a ∨ x′) ∧ b ∧ y

)
= x ∨

(
(a ∨ x′) ∧ y

)
=

(
x ∨ (a ∨ x′)︸ ︷︷ ︸

=1

)
∧ (x ∨ y)

= x ∨ y
= y.

Two maps of a lattice L into the interval [a, b] (a, b ∈ L, a ≤ b) are the upper
contraction a↑b and the lower contraction a↓b, defined by

a↑b(x) := (a ∨ x) ∧ b;
a↓b(x) := a ∨ (x ∧ b).

By the modular inequality, for all a, b ∈ L with a ≤ b, and all x ∈ L, a↓b(x) ≤ a↑b(x),
which justifies the names (cf. [1], p. 58). The condition that they be equal for
all a, b ∈ L with a ≤ b and all x ∈ L is exactly equivalent to the modularity of L.
Evidently, both a↑b and a↓b are the identity on [a, b], hence they are idempotent
and therefore surjective; also, it is clear that for all x ∈ L,

a↑b(x′) = xa↑b and a↓b(x′) = xa↓b.
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Recall that an element c of an ortholattice L is called central if xCc holds for all
x ∈ L. Clearly, if c is central, so is c′. Because ′ is a bijection from L to L, a
central element equivalently satisfies x′Cc for all x ∈ L, which in turn is equivalent
to xC ′c. Thus, every element of L both commutes and dually commutes with a
central element.

The theorem below states that if L is an ortholattice, under additional conditions
similar to – but stronger than – those in Theorem 2.3.1, the upper and lower
contractions are homomorphisms of L onto the ortholattice [a, b].

Theorem 2.3.2 (cf. [6], pp. 20–21). Let (L,∧,∨,0,1, ′) be an ortholattice and
a, b ∈ L with a ≤ b. If a↑b = a↓b on all of L (we shall write a|b for both), and both
a and b are central in L, then a|b is a homomorphism of (L,∧,∨,0,1, ′) onto the
ortholattice ([a, b],∧,∨, a, b, a|b).

Proof.

• Preserving 0 and 1: This is trivial, since a|b(0) = a ∨ (0 ∧ b) = a ∨ 0 = a and
a|b(1) = (a ∨ 1) ∧ b = 1 ∧ b = b.

• Preserving ′: We must show a|b(x′) =
(
a|b(x)

)a|b. First, note that xCa and
xC ′b for all x ∈ L implies

x ∨ a =
(
(x ∧ a) ∨ (x ∧ a′)

)
∨ a =

(
(x ∧ a) ∨ a

)
∨ (x ∧ a′) = a ∨ (a′ ∧ x),

x ∧ b =
(
(x ∨ b) ∧ (x ∨ b ′)

)
∧ b =

(
(x ∨ b) ∧ b

)
∧ (x ∨ b ′) = b ∧ (b ′ ∨ x)

by absorption. From this we obtain(
a|b(x)

)a|b
=

(
a ∨ (x ∧ b)

)a|b
= a ∨

((
a ∨ (x ∧ b)

)′ ∧ b)
= a ∨

(
a′ ∧ (x ∧ b)′ ∧ b

)
= a ∨

(
(x ∧ b)′ ∧ b

)
= a ∨

(
(x′ ∨ b′) ∧ b)

)
= a ∨ (x′ ∧ b)
= a|b(x′).

• Preserving ∧ and ∨: Since the conditions of this theorem imply the conditions
of Theorem 2.3.1, it suffices to show that one of the binary operations is
preserved, since the other one will then also be preserved by the fact that ′ is
preserved and that the De Morgan laws hold in the ortholattice [a, b]. We will
show it for ∨.

Firstly, for all x, y ∈ L we show the implication

(x ≤ b and y ≤ b′) ⇒ x = (x ∨ y) ∧ b.

On the one hand, x ≤ b by assumption and x ≤ x∨ y, thus also x ≤ (x∨ y)∧ b.
On the other hand, y ≤ b′ and so (x ∨ y) ∧ b ≤ (x ∨ b′) ∧ b = x ∧ b = x by the
isotone property, where (x ∨ b′) ∧ b = x ∧ b was proved in the previous point.
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Next, for all x, y ∈ L we can show that x, y, and b distribute:

(x ∨ y) ∧ b = (x ∧ b) ∨ (y ∧ b).

This follows from the above:

(x ∨ y) ∧ b

=
((

(x ∧ b) ∨ (x ∧ b′)
)
∨
(
(y ∧ b) ∨ (y ∧ b′)

))
∧ b

=
((

(x ∧ b) ∨ (y ∧ b)︸ ︷︷ ︸
=:x

)
∨
(
(x ∧ b′) ∨ (y ∧ b′)︸ ︷︷ ︸

=:y

))
∧ b.

We have x ≤ b and y ≤ b′, therefore (x ∨ y) ∧ b = x = (x ∧ b) ∨ (y ∧ b), which
completes the proof.

Finally, we can show a|b(x ∨ y) = a|b(x) ∨ a|b(y):

a|b(x) ∨ a|b(y)
= a ∨ (x ∧ b) ∨ a ∨ (y ∧ b)
= (a ∨ a) ∨ (x ∧ b) ∨ (y ∧ b)
= a ∨ (x ∧ b) ∨ (y ∧ b)
= a ∨

(
(x ∨ y) ∧ b

)
= a|b(x ∨ y).

Remark: Unlike with Theorem 2.3.1, the orthomodularity of L is clearly not sufficient
to guarantee the conditions of Theorem 2.3.2. Theorem 2.2.1 implies that the most
general class of ortholattices that satisfies these conditions for every interval is the
class of Boolean algebras. In fact, orthomodularity is not even sufficient to guarantee
that the lower and upper contractions coincide; that condition is equivalent to
modularity, which is strictly stronger. The orthomodular, but not modular, lattice in
Figure 2.1 gives a counterexample: any two-element interval whose lower end is one
of a, b, c (the upper end is one of c′, b′, a′) generates two contractions that map d to
different values.

Nevertheless, it is noteworthy that if an interval is of the form [0, b] or [a, 1], then the
conditions are almost fully fulfilled: the two contractions coincide in this case, and 0
and 1 are always central. In this case it suffices to require that the other endpoint of
the interval also be central. This is exactly the situation in the main theorem of this
section.

Theorem 2.3.3 ([6], p. 20). Let (L,∧,∨, 0, 1, ′) be an ortholattice and c ∈ L. Then
the following statements are equivalent:

(i) c is central in L;

(ii) ϕc : x 7→ (x∧c, x∧c′) is an isomorphism of L onto the ortholattice [0, c]× [0, c′],
where the ortholattice operations on the intervals are defined as in Theorem
2.3.1; the inverse mapping to ϕc is (x, y) 7→ x ∨ y.

24



1

c′ b′ a′

a b c

0

d d′

Figure 2.1: An orthomodular lattice which is not modular

Proof.

• (ii) ⇒ (i) is straightforward: Assume the given mapping ϕc is an isomorphism.
Then we have

ϕc

(
(x ∧ c) ∨ (x ∧ c′)

)
= ϕc(x ∧ c) ∨ ϕc(x ∧ c′)
= (x ∧ c ∧ c, x ∧ c ∧ c′) ∨ (x ∧ c′ ∧ c, x ∧ c′ ∧ c′)
= (x ∧ c, 0) ∨ (0, x ∧ c′)
= ((x ∧ c) ∨ 0, (0 ∨ (x ∧ c′))
= (x ∧ c, x ∧ c′)
= ϕc(x).

Because ϕc is injective by assumption, x = (x ∧ c) ∨ (x ∧ c′) for all x ∈ L, so c
is central.

• (i) ⇒ (ii): Assume c is central. As outlined in the remark above, the conditions
of Theorem 2.3.2 are satisfied for both [0, c] and [0, c′] (since c and c′ are either
both central or both not central), and so the contractions

0|c : x 7→ x ∧ c; 0|c′ : x 7→ x ∧ c′

are homomorphisms of L onto the ortholattices [0, c] and [0, c′], whose units
are c and c′, respectively, and whose orthocomplementations are

x0|c = x′ ∧ c; x0|c
′
= x′ ∧ c′.

Therefore ϕc : x 7→ (0|c(x),0|c′(x)) = (x ∧ c, x ∧ c′) is a homomorphism into
the direct product ortholattice [0, c] × [0, c′]. It remains to show that this
homomorphism is bijective.

To show that ϕc is injective, let x, y ∈ L with ϕc(x) = ϕc(y). Equality of the
ordered pairs implies their components are both equal, thus x ∧ c = y ∧ c and
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x ∧ c′ = y ∧ c′. Now because c is central, we have xCc and yCc, thus

x = (x ∧ c) ∨ (x ∧ c′) = (y ∧ c) ∨ (y ∧ c′) = y.

To show ϕc is surjective, recall that, as part of the proof of Theorem 2.3.2, we
have shown the implication

(x ≤ c and y ≤ c′) ⇒ x = (x ∨ y) ∧ c

provided c is central. By symmetry, and by noting that c′ is also central, we
also have the conclusion y = (x ∨ y) ∧ c′. Then it follows that ϕc is surjective,
because for every x ∈ [0, c], y ∈ [0, c′], it holds that (x, y) is the image of x ∨ y
under ϕc. This also shows that (x, y) 7→ x ∨ y is the inverse mapping to ϕc.

The above Theorem 2.3.3 is of importance in inductive proofs of statements about
finite ortholattices. It will also be central to the characterization of the free
orthomodular lattice with two generators, as it too will turn out to have nontrivial
central elements, and thus is isomorphic to a nontrivial direct product. Finally, an
important consequence of Theorem 2.3.3 is the following strengthening of Theorem
2.1.3, stating that if some element a of an orthomodular lattice commutes with two
others b and c, then not only do a, b, c satisfy the distributive laws, but any meets
and joins of them also do, i.e. the generated sublattice is distributive.

The sublattice generated by a subset A of a lattice L, for which we will write [A], is
the closure of A under ∧ and ∨; it is the smallest sublattice of L containing A as a
subset. Note that if L is an ortholattice, a sublattice of L need not be closed under
orthocomplementation. The closure under ∧, ∨, and the orthocomplementation is
the subalgebra generated by A, which we will denote by JAK. It is clear that if ϕ
is a lattice homomorphism, then ϕ[A] =

[
ϕ(A)

]
; similarly, if ϕ also preserves the

orthocomplementation between ortholattices, then ϕJAK =
q
ϕ(A)

y
.

Theorem 2.3.4 (strong Foulis–Holland; [6], p. 25). Let L be an orthomodular lattice
and a, b, c ∈ L. If one of a, b, c commutes with the other two (e.g. aCb and aCc),
then the sublattice

[
{a, b, c}

]
is distributive.

Proof. Consider L̃ :=
q
{a, b, c}

y
. Being a subalgebra of L, L̃ is also an orthomodular

lattice. In L̃, a commutes with both b and c, and it also commutes with itself;
because of Theorem 2.1.4, a commutes with every term function of a, b, c in ∧, ∨,
and ′, that is, every element of L̃. Thus a is central in L̃, and by Theorem 2.3.3, L̃ is
isomorphic to [0, a]× [0, a′].

Now consider the following sublattices of L:

• The sublattice generated by {1, b, c} in L is La := {1, b, c, b ∧ c, b ∨ c}. It is
easy to see that this lattice is distributive: e.g. it is isomorphic to the first
lattice of Figure 1.4, which has no pentagon and no diamond.

• The sublattice generated by {0, b, c} in L is La′ := {0, b, c, b ∧ c, b ∨ c}, which
is isomorphic to the second lattice of Figure 1.4 and is likewise distributive.
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Next, note the following:

• 0|a({a, b, c}) = {a ∧ a, a ∧ b, a ∧ c} = {a, a ∧ b, a ∧ c} = 0|a({1, b, c}). The
sublattice generated by {1, b, c} is La, which is distributive; thus also 0|a(La) =
0|a[{1, b, c}] =

[
0|a({1, b, c})

]
=

[
0|a({a, b, c})

]
= 0|a[{a, b, c}] is distributive.

• 0|a′({a, b, c}) = {a′ ∧ a, a′ ∧ b, a′ ∧ c} = {0, a′ ∧ b, a′ ∧ c} = 0|a′({0, b, c}).
Likewise, the sublattice generated by {0, b, c} is La′ , which is distributive, so
0|a′(La′) = 0|a′[{a, b, c}] is distributive.

Finally, using the notation of Theorem 2.3.3, ϕa[{a, b, c}] is distributive, being the
direct product of the two distributive lattices 0|a[{a, b, c}] and 0|a′[{a, b, c}]. However,
since ϕa is an isomorphism, it follows that also [{a, b, c}] is a distributive sublattice
of L̃ and thus of L.

We finish this section with a few closing remarks on the strong Foulis–Holland
theorem. The proof presented here relies on the small size of lattices generated by
two elements x, y: in the worst case, when x and y are incomparable, the (free) lattice
generated by x, y still has only four elements and is isomorphic to the rightmost
lattice of Figure 1.1; it is distributive. This technique does not extend to ortholattices,
which have significantly more elements in the general case. For this reason, this proof
cannot be extended to a stronger assertion about the generated subalgebra rather
than the sublattice.

In fact, such a stronger assertion is not even true: if elements a, b, c of an orthomodular
lattice L have the property that aCb and aCc, then J{a, b, c}K is in general not a
Boolean algebra. The orthomodular lattice depicted in Figure 2.2, given in [6], pp.
31–32, provides a counterexample: call its atoms b, s, a′, t, c from left to right, then
we have aCb and aCc and the lattice equals

q
{a, b, c}

y
, but, containing the diamond

as a sublattice, it is not distributive. If L is an orthomodular lattice and a, b, c ∈ L
have the property that every one of them commutes with the other two, then clearly
all of {a, b, c} commute with each other, and so, by Corollary 2.1.5, every element ofq
{a, b, c}

y
commutes with every other; by Theorem 2.2.1, this means

q
{a, b, c}

y
is

distributive. However, under just the assumptions of Theorem 2.3.4, namely that
only one element must commute with the other two – it could be that aCb and aCc,
but not necessarily bCc – we can in general only conclude that

q
{a, b, c}

y
is modular

(see [6], p. 27), not distributive.

If, however, we consider only two elements, then the corresponding assertion
(commonly used as an equivalent definition of commutativity in orthomodular lattices)
does hold, and is an easy consequence of Corollary 2.1.5 and Theorem 2.2.1:

Corollary 2.3.5 (cf. [6], pp. 22–23). Let L be an orthomodular lattice and a, b ∈ L.
Then the following statements are equivalent:

(i) aCb;

(ii) J{a, b}K is distributive.
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1

b′ s′ a t′ c′

b s a′ t c

0

Figure 2.2: A nondistributive OML generated by {a, b, c} with aCb and aCc

Proof. If J{a, b}K is distributive, i.e. a Boolean algebra, then by Theorem 2.2.1, all of
its elements commute, in particular a commutes with b, proving (ii) ⇒ (i). Conversely,
if aCb, then by orthomodularity, bCa and so all elements of {a, b} commute with
one another; thus, by Corollary 2.1.5, every element of J{a, b}K commutes with every
other and J{a, b}K is distributive, proving (i) ⇒ (ii).
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Chapter 3

Free Orthomodular Lattice with Two
Generators

The idea of a free algebra over a given class K of algebras of a given type is a central
concept in universal algebra. Informally, a free algebra is “the most general algebra”
of a given type generated by a given number of elements. Formally, let τ be a type,
K a class of algebras of type τ , F ∈ K, and X ⊆ F (X is called the generating set);
then F is called free over X in K if

(i) X generates F (i.e. F is the closure of X under the algebraic operations);

(ii) for all algebras A in K and all maps ϕ : X → A there exists a homomorphism
ϕ : F → A extending ϕ, i.e. satisfying ϕ

∣∣
X

= ϕ. If such a homomorphism
exists, it is unique ([4], p. 77; [5], p. 67).

The existence of free algebras is clear in the most common cases: if K is a variety,
then for any generating set X, an algebra free over X in K always exists ([4], p. 80).
Uniqueness is likewise guaranteed: if both F and G are free algebras over the same
set X in the same class K, then there exists an isomorphism ϕ : F → G such that
ϕ
∣∣
X
= idX ; in other words, free algebras are unique up to isomorphism if they exist

([4], p. 77, [5], p. 67). Accordingly, we will write FK(κ) for the free algebra over the
variety K with a generating set of cardinality κ; if the generating set is finite, we
will also write FK(α, β, . . . , ω) for FK({α, β, . . . , ω}).

For a class of algebras K and n ∈ N, FK(n) is of interest because every algebra A in
K generated by n or fewer elements is a homomorphic image, and thus a quotient
algebra, of FK(n) (a homomorphism being given by the unique extension of any
map from the generators of FK(n) to the generators of A, cf. [5], p. 67). Because
homomorphic images preserve identities, any identity that holds in FK(n) also holds
in any algebra in K generated by n elements; in particular, since any identity in
n variables holds in an algebra iff it holds in all its n-generated subalgebras, every
identity in n variables that holds in FK(n) holds in every algebra of K. Therefore, if
FK(n) is finite for some n, the validity of identities in n variables in all of K may be
verified simply by computation in the finite free algebra.
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The aim of this chapter is to fully characterize the free orthomodular lattice with two
generators, FOML(α, β). We shall see that this orthomodular lattice is isomorphic
to the direct product of 24, the two-generated free Boolean algebra, with MO2; in
particular, it is finite, having 96 elements. We will also present a method outlined
in [7] to represent the elements of FOML(α, β) in a standard form that allows for
simpler arithmetic, similar to what is possible with the disjunctive or conjunctive
normal forms in a Boolean algebra.

3.1 Structure of the Two-Generated Free OML
Note that if an orthomodular lattice L is generated by two elements α and β, then
α ∧ β commutes with both α and β, and therefore, by Corollary 2.1.5, with every
element of L. The same can also be said of elements such as α∨β, α′ ∧β, α∨β′, etc.
All of these are central in L, and Theorem 2.3.3 then implies that L is decomposable
into a direct product via any of these central elements.

For FOML(α, β), one of these central elements (more precisely, one pair of central
elements which are orthocomplements) will be of particular importance, as the
components of the corresponding direct product will have particularly simple forms.
These elements are the lower commutator α ⇓ β and upper commutator α ⇑ β,
defined as

α ⇓ β := (α ∧ β) ∨ (α ∧ β′) ∨ (α′ ∧ β) ∨ (α′ ∧ β′);

α ⇑ β := (α ∨ β) ∧ (α ∨ β′) ∧ (α′ ∨ β) ∧ (α′ ∨ β′).

These are dual to each other; by the De Morgan laws, they are also clearly
complements of one another. Their names (given in [1], p. 86) are by analogy
to the lower and upper contraction: the lower commutator, like the lower contraction,
is a join of meets; the upper commutator, like the upper contraction, is a meet
of joins. Both commutators are central, which is a straightforward application of
Corollary 2.1.5: they are a join and meet, respectively, of central elements. Moreover,
the name “commutator” for both of them stems from the fact that they characterize
commutativity in an orthomodular lattice:

Theorem 3.1.1 ([1], pp. 86–87; [6], pp. 26–27). In an orthomodular lattice L the
following conditions are equivalent for any a, b ∈ L:

(i) aCb;

(ii) a ⇓ b = 1;

(iii) a ⇑ b = 0.

Proof.

• (ii) and (iii) are obviously equivalent, since the lower and upper commutator
are complements.
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• (i) ⇒ (ii): Assume aCb, then by orthomodularity a′Cb and therefore

a ⇓ b = (a ∧ b) ∨ (a ∧ b′)︸ ︷︷ ︸
=a

∨ (a′ ∧ b) ∨ (a′ ∧ b′)︸ ︷︷ ︸
=a′

= a ∨ a′ = 1.

• (iii) ⇒ (i): Define

x := a; y := (a ∨ b) ∧ (a ∨ b′).

We will verify the conditions of (OML*). First, notice that x ≤ y always holds,
because of a ≤ a∨ b and a ≤ a∨ b′. For the same reason, a′ ≤ (a′∨ b)∧ (a′∨ b′).
Therefore, by the isotone property,

a′ ≤ (a′ ∨ b) ∧ (a′ ∨ b′)
a′ ∧ (a ∨ b) ∧ (a ∨ b′) ≤ (a ∨ b) ∧ (a ∨ b′) ∧ (a′ ∨ b) ∧ (a′ ∨ b′)
a′ ∧ (a ∨ b) ∧ (a ∨ b′) ≤ a ⇑ b.

By assumption, a ⇑ b = 0 and so a′ ∧ (a ∨ b) ∧ (a ∨ b′) = y ∧ x′ ≤ 0,
meaning y ∧ x′ = 0. Therefore, by (OML*), x = y, which means aC ′b. By
orthomodularity, we conclude aCb.

In what follows, L is an orthomodular lattice generated by two elements α, β (not
necessarily free). We define c := α ⇓ β and c′ := α ⇑ β and we define ortholattice
operations on the intervals [0, c] and [0, c′] as in Theorem 2.3.1. By Theorem 2.3.3,
L is isomorphic to [0, c]× [0, c′] with these operations, and we will now analyze the
two components of this direct product representation more closely. We first examine
[0, c′]. From here onwards, the six elements of MO2 (Figure 1.6) will be denoted in
fixed-width type: 0, a, A, b, B, 1, where 0 is the zero, 1 is the unit, a′ = A, and b′ = B.

Theorem 3.1.2 ([1], pp. 77–78; [6], p. 27). [0, c′] is a homomorphic image of MO2.

Proof. Since L is generated by α, β, and the map x 7→ x ∧ c′ defined in Theorem
2.3.3 is a homomorphism from L onto [0, c′], it follows that [0, c′] has generators
α ∧ c′, β ∧ c′. By the absorption law,

α ∧ c′ = α ∧ (α ∨ β) ∧ (α ∨ β′) ∧ (α′ ∨ β) ∧ (α′ ∨ β′)

= α ∧ (α′ ∨ β) ∧ (α′ ∨ β′);

β ∧ c′ = β ∧ (α ∨ β) ∧ (α′ ∨ β) ∧ (α ∨ β′) ∧ (α′ ∨ β′)

= β ∧ (α ∨ β′) ∧ (α′ ∨ β′).

Similarly, α′ ∧ c′ = α′ ∧ (α ∨ β) ∧ (α ∨ β′) and β′ ∧ c′ = β′ ∧ (α ∨ β) ∧ (α′ ∨ β). We
examine the joins and meets of M := {α ∧ c′, α′ ∧ c′, β ∧ c′, β′ ∧ c′}:

• Since c′ is central in L, by Theorem 2.1.3 we have (x∧c′)∨(y∧c′) = (x∨y)∧c′ for
all x, y ∈ L. But notice that, for all α ∈ {α, α′} and β ∈ {β, β′}, α∨β is already
one of the four terms of which c′ is the meet, thus it vanishes by the idempotent
law when taking the meet with c′, yielding simply (α ∧ c′) ∨ (β ∧ c′) = c′.
Likewise, by commutativity, (α ∧ c′)∨ (α′ ∧ c′) = c′ and (β ∧ c′)∨ (β′ ∧ c′) = c′.
Thus we see that the join of any two distinct elements of M is c′.
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• By the idempotent law, we have (x∧ c′)∧ (y ∧ c′) = (x∧ y)∧ c′ for all x, y ∈ L.
For all α ∈ {α, α′} and β ∈ {β, β′}, α ∧ β is a complement of one of the four
terms in c′; thus, when taking the meet with c′, it collapses the expression into
0. Therefore the meet of any two distinct elements of M is 0.

By the homomorphism property of the map x 7→ x∧ c′, we know that (α∧ c′, α′∧ c′),
(β ∧ c′, β′ ∧ c′), (0, c′) are pairs of orthocomplements in [0, c′]; moreover, 0 is the
zero and c′ is the unit. It follows that [0, c′] = {0, α ∧ c′, α′ ∧ c′, β ∧ c′, β′ ∧ c′, c′}; its
elements behave just like the six elements of MO2 under the algebraic operations.
Thus [0, c′] is a homomorphic image of MO2.

Theorem 3.1.3. MO2 is a simple lattice; any homomorphic image of MO2 is either
isomorphic to MO2 or it is the one-element lattice.

Proof. Let 0, a, A, b, B, 1 be the elements of MO2. We will show the statement via
congruence relations: namely, if any two distinct elements of MO2 are identified,
then all its elements are identified. Let therefore ≈ be a congruence relation on MO2.

• If 0 ≈ 1, then every element x is identified with 0, since 0 = 0∧ x ≈ 1∧ x = x;
therefore all elements are identified.

• If some element x is identified with a complement y such that x ∧ y = 0 and
x ∨ y = 1, then

0 = x ∧ y ≈ x ∧ x = x ≈ y = y ∨ y ≈ x ∨ y = 1,

thus 0 ≈ 1.

• If a non-zero, non-unit element (WLOG, a) is identified with 0, then

b = b ∨ 0 ≈ b ∨ a = 1 = B ∨ a ≈ B ∨ 0 = B,

thus b ≈ B.

• If a non-zero, non-unit element is identified with 1, then its orthocomplement
(which is also non-zero, non-unit) is identified with 0.

Because out of all non-zero, non-unit elements of MO2, any pair of distinct elements is
a pair of complements, this covers all cases of distinct elements. Thus any congruence
relation on MO2 identifies either only equal elements or else all elements, so MO2 is
simple.

Corollary 3.1.4. In FOML(α, β), [0, c′] is isomorphic to MO2.

Proof. Were [0, c′] instead isomorphic to the one-element lattice, then 0 would have
to equal c′ in FOML(α, β), which would imply that the identity

a ⇑ b = 0

would hold in every orthomodular lattice L. However, by Theorem 3.1.1, this
implies aCb, whence by Theorem 2.2.1, all orthomodular lattices would be Boolean
algebras.
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Let L again be an orthomodular lattice generated by α and β. We found that in that
case [0, c′] is a homomorphic image of MO2. Now we turn to the other factor, [0, c]:

Theorem 3.1.5 ([1], p. 78–79; [6], p. 27). [0, c] is a Boolean algebra.

Proof. In analogy to Theorem 3.1.2, we find that α ∧ c, β ∧ c are the generators of
[0, c]. Applying distributivity by Theorem 2.1.3,

α ∧ c = α ∧
(
(α ∧ β) ∨ (α ∧ β′) ∨ (α′ ∧ β) ∨ (α′ ∧ β′)

)
=

(
α ∧

(
(α ∧ β) ∨ (α ∧ β′)

))
∨
(
α ∧

(
(α′ ∧ β) ∨ (α′ ∧ β′)

))
= (α ∧ α ∧ β) ∨ (α ∧ α ∧ β′) ∨ (α ∧ α′ ∧ β︸ ︷︷ ︸

=0

) ∨ (α ∧ α′ ∧ β′︸ ︷︷ ︸
=0

)

= (α ∧ β) ∨ (α ∧ β′).

Analogously, β∧c = (α∧β)∨(α′∧β). Because α∧β, α∧β′, α′∧β, α′∧β′ are central
elements, by Corollary 2.1.5, α ∧ c and β ∧ c commute with each other. Therefore,
by Corollary 2.3.5, [0, c] =

q
{α ∧ c, β ∧ c}

y
is a Boolean algebra.

Theorem 3.1.6. FBool(α, β), the free Boolean algebra with two generators, is
isomorphic to 2

4.

Proof. We will make use of the disjunctive normal form. Consider any element of
FBool(α, β); it is a term t in the variables α, β and the operations ∧,∨, 0, 1, ′. Apply
the following transformations to t:

• Eliminate 0 and 1 by replacing them with α ∧ α′ and α ∨ α′, respectively.

• Apply the De Morgan laws repeatedly on subterms of the form (x ∧ y)′ and
(x ∨ y)′ until there are no more subterms of this form; then, apply x′′ = x
repeatedly until there are no multiple applications of ′; now, all instances of ′

in t are applied either to α or to β.

• Apply the distributive law (D1) repeatedly until all meets of joins are replaced
by joins of meets. Now t has the form

t(α, β) =
∨
i∈I

∧
j∈Ji

xij,

where each xij is one of α, β, α′, β′. We define Ti := {xij | j ∈ Ji}.

• By the idempotent law, any repeat elements among the xij for any Ji can be
eliminated, therefore

t(α, β) =
∨
i∈I

∧
j∈Ji

xij =
∨
i∈I

∧
Ti.

• If some Ti contains both α and α′, or both β and β′, then
∧
Ti = 0, so Ti can

be removed from t. Now, every Ti contains at most one of α and α′ and at
most one of β and β′. We consider three cases:
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(a) Ti = {x, y} with x ̸= y (it contains exactly one of α and α′ and exactly
one of β and β′): Leave it.

(b) Ti = {x}, WLOG x = α: Replace it by Ti0 = {α, β} and Ti1 = {α, β′}.
The value of t is unchanged, since (α∧β)∨(α∧β′) = α, since in a Boolean
algebra any two elements commute.

(c) Ti = ∅: Replace it by Ti0 = {α, β}, Ti1 = {α, β′}, Ti2 = {α′, β}, and
Ti3 = {α′, β′}. The value of t is unchanged, since

(α ∧ β) ∨ (α ∧ β′) ∨ (α′ ∧ β) ∨ (α′ ∧ β′) = α ⇓ β = 1 =
∧

∅,

since by Theorem 3.1.1 the lower commutator of any two elements is 1 in
a Boolean algebra.

• In every case we transformed the Ti in such a way that each of them now
contains exactly one of α and α′ and exactly one of β and β′.

• Define T := {Ti | i ∈ I}. By the idempotent law, any repeat elements among
the Ti can be eliminated, giving t its final form

t(α, β) =
∨
U∈T

∧
U.

The elements of T now all contain exactly one of α and α′ and exactly one of β
and β′. There are only four such sets: {α, β}, {α, β′}, {α′, β}, {α′, β′}. Therefore,
defining S :=

{
{α, β}, {α, β′}, {α′, β}, {α′, β′}

}
, there are only 16 = 24 = |P(S)|

possibilities for the set T , and we have shown that FBool(α, β) is a homomorphic
image of (P(S),∩,∪,∅, S,X 7→S \X), which itself is clearly isomorphic to 2

4. To
see that FBool(α, β) has exactly 16 elements, consider that the 16-element Boolean
algebra 2

4 has the generators α := (1,0,1,0) and β := (0,0,1,1), since

α ∧ β′ = (1,0,0,0);

α′ ∧ β′ = (0,1,0,0);

α ∧ β = (0,0,1,0);

α′ ∧ β = (0,0,0,1),

and every other element of 24 is a (possibly empty) join of these four, and neither α
nor β alone generates all 16 elements of 24. Since every Boolean algebra with two
generators must be the homomorphic image of FBool(α, β), it follows that FBool(α, β)
must have at least 16 elements; thus, in combination with the above, it has exactly
16 elements and it is isomorphic to 2

4.

At this stage we remark that the proof of Theorem 3.1.6 can be generalized to show
that FBool(n), the free Boolean algebra with n generators, is isomorphic to 2

2n for
all n ∈ N. In particular, every finitely generated Boolean algebra is finite. The
same is not true of finitely generated free orthomodular lattices, as even the free
orthomodular lattice with three generators is already infinite (see [1], pp. 89–94).
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Corollary 3.1.7. In FOML(α, β), [0, c] is isomorphic to 2
4.

Proof. We need to show that in FOML(α, β), [0, c] is a free Boolean algebra with
two generators α ∧ c, β ∧ c. Since α, β generate FOML(α, β), by the homomorphism
property of x 7→ x ∧ c, we have that α ∧ c, β ∧ c generate [0, c]. We must show that
[0, c] is free and that α∧ c, β ∧ c are distinct (so that they are in fact two generators).
To this end, let B be a Boolean algebra, and let ϕ be a map from {α ∧ c, β ∧ c} into
B; we must find a homomorphic extension ϕ from [0, c] into B extending ϕ.

Note that B, being a Boolean algebra, is in particular orthomodular. Define the map
ψ from {α, β} into B by

ψ(α) = ϕ(α ∧ c); ψ(β) = ϕ(β ∧ c).

Then, by the freeness of FOML(α, β), there exists a homomorphic extension ψ from
FOML(α, β) into B extending ψ. We claim that the map ψ

∣∣
[0,c]

is the desired
homomorphic extension of ϕ from [0, c] into B, proving that [0, c] is free. It is a
homomorphism, so we only need to show that it extends ϕ:

ψ(α ∧ c) = ψ
(
(α ∧ β) ∨ (α ∧ β′)

)
=

(
ψ(α) ∧ ψ(β)

)
∨
(
ψ(α) ∧ ψ(β)′

)
=

(
ϕ(α ∧ c) ∧ ϕ(β ∧ c)

)
∨
(
ϕ(α ∧ c) ∧ ϕ(β ∧ c)′

)
= ϕ(α ∧ c),

where the last equality is because ϕ maps into a Boolean algebra, where all elements
commute; the computation for β ∧ c is analogous. Thus [0, c] is free. Suppose
therefore that the two generators are not distinct, so α ∧ c = β ∧ c in FOML(α, β).
This would imply that the identity

∀ a, b ∈ L : (a ∧ b) ∨ (a ∧ b′) = (a ∧ b) ∨ (a′ ∧ b)

holds in every orthomodular lattice L. Suppose additionally that aCb, and therefore
bCa; then the left-hand side reduces to a and the right one to b, so this identity
would imply that in every orthomodular lattice, elements can only commute if they
are equal.

Let us summarize the results:

Corollary 3.1.8 (cf. [1], pp. 80–86; [6], p. 239). FOML(α, β) is isomorphic to
2
4 ×MO2; it is a finite orthomodular lattice with 96 elements.

3.2 Properties of the Two-Generated Free OML
The representation of FOML(α, β) as the direct product 24 ×MO2 of two elementary,
well-understood lattices facilitates the analysis of many of its properties – particularly
those which are defined by identities, since identities hold in FOML(α, β) iff they hold
componentwise in the two factors 24 and MO2. We begin by exposing a representation
of the two generators α, β in the product 24×MO2. We first need an auxiliary result:
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Theorem 3.2.1. Let L be an ortholattice and {x0, . . . , xn−1} be a finite nonempty
subset of L. Then it holds that

q
{x0, . . . , xn−1}

y
=

[
{x0, . . . , xn−1, x

′
0, . . . , x

′
n−1}

]
.

Proof. Essentially, we apply the first two steps of the transformation in the proof
of Theorem 3.1.6. Let t be a term in the operations ∧, ∨, 0, 1, ′ and the variables
x0, . . . , xn−1. Eliminate 0 and 1 by replacing them with x0 ∧ x′0 and x0 ∨ x′0; then,
apply the De Morgan laws repeatedly to eliminate subterms of the form (x ∧ y)′ and
(x ∨ y)′; finally, apply x′′ = x repeatedly until there are no multiple applications of ′.
Now t is a term in the operations ∧ and ∨ and the variables x0, . . . , xn−1 plus their
orthocomplements x′0, . . . , x′n−1.

We use the above Theorem 3.2.1 to characterize the generators of 24 ×MO2. The
obvious approach is somewhat problematic: simply showing that a pair of elements
in 2

4×MO2 generates the two generators of 24×{0} ∼= 2
4 and the two generators of

{0} ×MO2
∼= MO2 is not enough, as the orthocomplementations in the two factors

differ from the orthocomplementation on 2
4×MO2 restricted to the subsets 24×{0}

and {0} ×MO2 (which are not even closed under it).

However, the join and meet operations do coincide: therefore, by Theorem 3.2.1, it
does suffice to generate the two generators of 24 and their orthocomplements in 2

4,
plus the two generators of MO2 and their orthocomplements in MO2.

Theorem 3.2.2 (cf. [1], pp. 80–81; [6], p. 239). Denote an element of 24 ×MO2 by
(x, x0, x1, x2, x3), where x ∈ MO2 and x0, x1, x2, x3 ∈ 2 = {0,1}. Let 0, a, A, b, B, 1
be the elements of MO2. Then the following pair of elements generates 24 ×MO2:

α := (a,1,0,1,0),

β := (b,0,0,1,1).

Proof. In the proof of Theorem 3.1.6 we have seen that (1, 0, 1, 0), (0, 0, 1, 1) generate
2
4; also, clearly, a, b generate MO2. Applying Theorem 3.2.1, it suffices to show that

the following eight elements can all be generated by α, β:

α0 := (0,1,0,1,0) = (α ∧ β) ∨ (α ∧ β′),
β0 := (0,0,0,1,1) = (β ∧ α) ∨ (β ∧ α′),
α′
0 := (0,0,1,0,1) = (α′ ∧ β) ∨ (α′ ∧ β′),
β′
0 := (0,1,1,0,0) = (β′ ∧ α) ∨ (β′ ∧ α′),
α1 := (a,0,0,0,0) = (α′ ∨ β) ∧ (α′ ∨ β′) ∧ α,
β1 := (b,0,0,0,0) = (β′ ∨ α) ∧ (β′ ∨ α′) ∧ β,
α′
1 := (A,0,0,0,0) = (α ∨ β) ∧ (α ∨ β′) ∧ α′,
β′
1 := (B,0,0,0,0) = (β ∨ α) ∧ (β ∨ α′) ∧ β′.

The calculations are straightforward: in the Boolean part, any two elements commute,
so the first four terms simplify to α, β, α′, β′ and the last four to 0; in the MO2 part,
we have a ∧ b = 0 and a ∨ b = 1 for all a ∈ {a, A} and b ∈ {b, B}, so the first four
terms simplify to 0 and the last four to α, β, α′, β′.
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It quickly becomes apparent that the notation (x, x0, x1, x2, x3) for the elements of
FOML(α, β) is rather verbose, and a more succinct notation is called for. To this end
we present the notation proposed by Mirko Navara in [7], inspired by a set-theoretical
representation. In this notation, every element of FOML(α, β) is represented by a
symbol consisting of four dots which are each either hollow or filled (representing the
2
4 part) within the boundary of a square whose edges are either present or absent

(representing the MO2 part). The layout is clarified the figure below.

x0

x1

x2

x3

Navara symbols for elements of FOML(α, β)

Each of the dots represents a separate factor of 2 within 2
4, where 0 is hollow and

1 is filled; the edges of the square represent an element of MO2 by the following
correspondence:

0 a A b B 1

The meets and joins of each of these symbols are the set-theoretical intersections and
unions of the edges, except that a single edge “degenerates” to the empty symbol,
while a symbol with three edges “oversaturates” to the full square. Equivalently,
the orthocomplementation coincides with set-theoretical complementation and the
partial order coincides with set inclusion, but the joins and meets do not in general
coincide with the set-theoretical unions and intersections, and have to be derived
from the partial order (using the definition via infima and suprema).

The layout was chosen so that the zero, the unit, the generators α, β, and their
orthocomplements have the symbols

0 α α′ β β′ 1

which lend themselves well to the mnemonic that α is in the bottom left, β is in
the bottom right, and orthocomplements are on opposite sides. (We identify the
two generators α, β of FOML(α, β) with the two generators α, β of 24 ×MO2 from
Theorem 3.2.2.) The meet, join, and orthocomplementation operations on these
symbols are performed separately on the MO2 part and on each of the four dots of the
2
4 part. Since the orthocomplementation coincides with set-theoretical complements

on both the 24 part and the MO2 part, the orthocomplement of a symbol is just its

37



set-theoretical complement. Because the partial order on a lattice is defined through
identities (a ≤ b iff a = a ∧ b iff b = a ∨ b), the partial order on a direct product
of lattices is componentwise: if L0 and L1 are lattices, a0, b0 ∈ L0 and a1, b1 ∈ L1,
then (a0, a1) ≤ (b0, b1) in L0 × L1 iff a0 ≤ b0 in L0 and a1 ≤ b1 in L1. Therefore, the
partial order is also indicated directly by the symbols: when one symbol is a subset
of the other. Some examples of computation on these symbols are shown below.

∧ = ∨ =

∧ = ∨ =

′ = ′ =

≤ ≥

Equipped with a compact notation for the elements of FOML(α, β), we now turn to
investigating its properties. It will become apparent that in many cases the Navara
symbols spell out statements about FOML(α, β) all by themselves, when they would
not have been so clear using the conventional representation as terms in α and β.

We begin by characterizing the covering relation on FOML(α, β). Recall that for two
elements x, y of a poset P , y covers x, in notation x ≺ y, if x < y and no z ∈ P
satisfies x < z < y. If L0 and L1 are two lattices, then from the componentwise
definition of the partial order in the direct product of L0 × L1 it follows that
(x0, x1) ≺ (y0, y1) iff either x0 ≺ y0 and x1 = y1, or x1 ≺ y1 and x0 = y0. With this
remark and by examining the Hasse diagram of MO2, the following theorem is trivial:

Theorem 3.2.3.

(i) In FOML(α, β), y covers x iff either the Boolean part of y covers the Boolean
part of x and their MO2 parts coincide, or the MO2 part of y covers the MO2

part of x and their Boolean parts coincide.

(ii) In 2
4, (x0, x1, x2, x3) covers (y0, y1, y2, y3) iff exactly one i ∈ {0, 1, 2, 3} satisfies

yi = 1, xi = 0, and ∀j ̸= i : xj = yj.

(iii) In MO2, x ≺ y iff either y = 1, x ∈ {a, A, b, B}, or x = 0, y ∈ {a, A, b, B}.

Note that in Navara’s notation, a ≺ b iff the symbol of b has exactly one more part
than the symbol for a. For instance,

≺ , ≺ , ≺ .

The covering relation allows us to enumerate the atoms of FOML(α, β):

Theorem 3.2.4. FOML(α, β) has eight atoms. Every element of FOML(α, β) is a
join of these atoms; in other words, FOML(α, β) is an atomistic lattice.

Proof. From the componentwise definition of the partial order it follows that an
atom of L0 × L1, where L0 and L1 are bounded lattices, is either of the form (x0,0)
where x0 is an atom of L0, or (0, x1) where x1 is an atom of L1. The disjoint union
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of these two sets forms the set of atoms of L0 × L1. Let us therefore find the atoms
of 24 and MO2:

• 2
4: We have seen in the proof of Theorem 3.1.6 that 24 = FBool(α, β) has four

atoms: α ∧ β, α ∧ β′, α′ ∧ β, α′ ∧ β′.

• MO2: From the Hasse diagram it is clear that its atoms are a, b, A, B.

In Navara’s notation, the eight atoms of FOML(α, β) are:

that is, precisely the eight symbols with exactly one part. It is clear that by taking
joins of these symbols, any arbitrary symbol can be constructed, thus FOML(α, β) is
atomistic. (In fact, every orthomodular lattice is atomistic.)

We next turn to commutativity in FOML(α, β). Since commutativity is defined by
an identity, commutativity in a direct product of ortholattices is componentwise. We
will see that the Navara symbols give a clear indication of when two given elements
of FOML(α, β) commute, as well a simple identification of its central elements:

Theorem 3.2.5. In FOML(α, β), two elements commute iff their MO2 parts commute.
The commutativity relation on MO2 is minimal, i.e. only those pairs of elements
that must commute in every ortholattice actually do commute: if one of them is the
zero or the unit, or they are equal, or they are mutual orthocomplements.

Proof. Since the other factor of FOML(α, β), namely 2
4, is a Boolean algebra, every

pair of 24 parts commutes. Thus, the condition that both parts commute is equivalent
to just the condition that the MO2 parts commute. Clearly, if they are equal, or
they are orthocomplements, or one of them is 0 or 1, they commute; in every other
case it can be seen that the term (x ∧ y) ∨ (x ∧ y′) will evaluate to 0 rather than x
(see Table 3.1).

In Navara’s notation, two elements commute iff their join and meet would be
purely set-theoretical, i.e. we wouldn’t need to apply the rules of degenerating and
oversaturating for the MO2 parts.

Theorem 3.2.6. The central elements of FOML(α, β) are precisely those whose MO2

part is either 0 or 1. The center C
(
FOML(α, β)

)
(i.e. the set of all central elements)

is isomorphic to 2
4 × {0, 1} ∼= 2

5; it has 32 elements.

Proof. Since commutativity in FOML(α, β) is componentwise, C
(
FOML(α, β)

)
is

isomorphic to C(24)× C(MO2). Since 24 is Boolean, it is equal to its own center.
MO2 has a trivial center: its zero and unit are obviously central, and every other
element has an element that does not commute with it, so C(MO2) = {0, 1}.

Remark: MO2 is rather special in having a minimal commutativity relation. An
ortholattice L with minimal commutativity is one where C = R, where the relation
R is defined by xRy iff x = y or x = y′ or one of x, y is 0 or 1; if elements of the
ortholattice are listed with 0,1 at the extremes and orthocomplements on opposite

39



C

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: The commutativity relation on MO2

sides, then the table of R is shaped like the symbol “⊠”. Clearly, R is a symmetric
relation; thus, any ortholattices where C = R holds must be orthomodular. Since
x ≤ y implies xCy for all x, y ∈ L, no two non-zero, non-unit elements may be
comparable; thus, the only possibilities are the one-element lattice, 2, and the
orthomodular lattices MOn for n ≥ 1, consisting of 0, 1, and the 2n mutually
incomparable elements x0, . . . , xn−1, x

′
0, . . . , x

′
n−1, all of which are simultaneously

atoms and co-atoms.

We now turn our attention to congruence relations, or equivalently quotient algebras,
of FOML(α, β). It is a known result in the theory of orthomodular lattices that
congruence relations on an orthomodular lattice correspond bijectively to so-called
p-ideals (see [6], p. 73). For a lattice L, a (lattice) ideal I is a sublattice that is
additionally closed under meets with arbitrary elements of L, i.e. for any x ∈ I, y ∈ L,
we have x ∧ y ∈ I. (The dual concept is that of a filter.) A p-ideal of a bounded
lattice is an ideal that is additionally closed under perspectivity, so that for any
x ∈ I and y ∼ x we have y ∈ I. (Recall that two elements x, y of a bounded lattice
L are perspective if they have a common complement, i.e. if there is z ∈ L such that
x ∧ z = 0 = y ∧ z and x ∨ z = 1 = y ∨ z.) The p-ideals of an orthomodular lattice L
are precisely the equivalence classes of 0 under the congruence relations on L, and
these equivalence classes fully characterize the congruence relations ([6], p. 76–77;
[2]). It therefore suffices to find the p-ideals of FOML(α, β). To this end we recall a
few standard results about lattice ideals ([4], pp. 32–33).

• A lattice ideal I is equivalently a sublattice that is also a down-set, that is a set
“closed under” ≤: for any x ∈ I, y ∈ L, y ≤ x implies y ∈ I. For if x ∈ I, y ∈ L
and y ≤ x holds, then y = y ∧ x, so y is the meet of two elements of which one
is in I, which by the definition of an ideal implies y ∈ I. Conversely, if I is a
sublattice and a down-set, and x ∈ I and y ∈ L are given, then x ∧ y ≤ x, so
by the definition of a down-set, x ∧ y ∈ I.
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• The intersection of any set of ideals of a lattice L is again an ideal of L. Thus,
it makes sense to define the ideal generated by a subset A ⊆ L, written (A],
as the intersection of all ideals of L which are supersets of A. For the ideal
generated by a singleton whose only element is a, called a principal ideal, we
also write (a]. (The notations [A) and [a) are used for filters.)

• For all a ∈ L, we have (a] = {x ∧ a | x ∈ L} = {x ∈ L | x ≤ a}.

• For all A ⊆ L, we have (A] = {x ∈ L | ∃F ⊆ A,F finite nonempty, x ≤
∨
F}.

If A ⊆ L is finite and nonempty, we get (A] = {x ∈ L | x ≤
∨
A}. If L is additionally

bounded, we also have (A] = [0,
∨
A]. Taking A = {a} for arbitrary a ∈ L, we find

that every interval of the form [0, a] is an ideal of L. If L is finite, then conversely,
every ideal I of L is of the form [0, a] for some a ∈ L, namely a =

∨
I. The inclusion

[0,
∨
I] ⊇ I is clear, since for all x ∈ I it holds that x ≤

∨
I. For the reverse

inclusion, take x ≤
∨
I; since I is a sublattice and L is finite,

∨
I ∈ I; since I

is a down-set, we conclude x ∈ I. Thus, in a finite lattice, there is a one-to-one
correspondence between the ideals and the elements.

Since FOML(α, β) is a finite lattice, its ideals are precisely the intervals [0, x] for all
choices of x ∈ FOML(α, β). The question remains which of them are closed under
perspectivity. We therefore characterize the perspectivity relation on FOML(α, β).
Since perspectivity is defined by identities, perspectivity in a direct product is also
componentwise: (a0, a1) ∼ (b0, b1) in L0 × L1 with common complement (c0, c1)
iff a0 ∼ b0 in L0 with common complement c0 and a1 ∼ b1 in L1 with common
complement c1. Therefore it suffices to characterize perspectivity in 2

4 and MO2

separately.

Theorem 3.2.7. In FOML(α, β), two elements are perspective iff their Boolean parts
are equal and their MO2 parts are perspective. Two elements of MO2 are perspective
iff they are equal or they are both not the zero and not the unit.

Proof. Since 24 is a Boolean algebra, by Corollary 2.2.4, the 24 parts are perspective
iff they are equal. For the MO2 part, clearly two equal elements are perspective,
and any two distinct, non-zero, non-unit elements are perspective, since in the set
{a, A, b, B}, the meet of any two distinct elements is 0 and their join is 1.

To show these are all the perspective pairs, we show that in every bounded lattice, no
non-zero element can be perspective to 0; then, dually, no non-unit can be perspective
to 1 and the perspectivity relation on MO2 will be fully characterized (see Table
3.2). Since a complement c of 0 must satisfy 1 = 0∨ c = c, 1 is the only complement
of 0. However, if 1 is a complement of any other element x, then 0 = 1 ∧ x = x.

In Navara’s notation, two elements are perspective iff their Boolean parts coincide
and their MO2 parts have equal numbers of edges.

Remarks:

• Since pairs of elements of MO2 are perspective whenever it is not the case
that in every bounded lattice they would not be perspective, the perspectivity
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∼

✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓

Table 3.2: The perspectivity relation on MO2

relation on MO2 is maximal in the same way as its commutativity relation is
minimal. The perspectivity relation is maximal if it is equal to the relation
R defined on a bounded lattice by xRy iff x = y or neither of x, y is 0 or 1.
Thus, the two parts of FOML(α, β) are “counterparts” in several ways: 24 has
maximal commutativity and minimal perspectivity, while MO2 has minimal
commutativity and maximal perspectivity.

• Maximal perspectivity is more common than minimal commutativity. Any
bounded lattice L consisting of “parallel” chains (i.e. L has a family of
sublattices Ci, all of which are chains, such that

⋃
Ci = L and for any i ̸= j

we have Ci ∩ Cj = {0,1}) is maximally perspective if the number of chains is
at least 3 and the length of each chain is at least 3. (In that case, pick any
two non-zero, non-unit elements: if they are both in the same chain, then any
element in a different chain is a common complement; if they are in two different
chains, then any element in yet another chain is a common complement.)

We can now specify the p-ideals, and thus the congruence relations and quotient
algebras, of FOML(α, β). For two algebras A0, A1 of the same type, with relations
≈0 and ≈1 respectively, we define their product (≈) = (≈0)× (≈1) on A0 × A1 by
(a0, a1) ≈ (b0, b1) iff a0 ≈0 b0 and a1 ≈1 b1. It is an elementary computation that if
≈0 and ≈1 are congruence relations on A0 and A1 respectively, then their product
is again a congruence relation on A0 × A1. In the theorem below we see that all
congruence relations on FOML(α, β) are of this form, i.e. products of congruence
relations on its five simple lattice factors.

Theorem 3.2.8. FOML(α, β) has 32 p-ideals, namely all the intervals of the form
[0, c] where the MO2 part of c is either 0 or 1, i.e. whenever c is central. These
correspond one-to-one with 32 congruence relations on FOML(α, β). Every congruence
relation on FOML(α, β) is a product of congruence relations on its five simple lattice
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factors MO2×2×2×2×2. Thus, every quotient algebra of FOML(α, β) is a product
in which some or all of these five factors have been optionally factored out.

Proof. We know every ideal of FOML(α, β) is an interval of the form [0, c] for
some element c. The question remains which of these intervals are closed under
perspectivity. We begin by finding the perspective closure of singletons {c} for any
element c, i.e. the smallest superset of {c} that is closed under perspectivity. For
a ∈ FOML(α, β) or 24, and b ∈ FOML(α, β) or MO2, we write a× b for the element
of 24 ×MO2 with the Boolean part of a and the MO2 part of b.

• If the MO2 part of c is either 0 or 1, then c is the only element perspective to
c, so the perspective closure of {c} is {c}.

• Otherwise, the elements perspective to c are c×a, c×A, c×b, c×B (one of which
is c itself), so the perspective closure of {c} consists of these four elements.

Recall that the partial order on 2
4×MO2 is componentwise. Thus, any interval [0, c]

consists of those elements whose Boolean part is less than or equal to the Boolean
part of c and whose MO2 part is less than or equal to the MO2 part of c.

• If the MO2 part of c is 0, then [0, c] contains only elements with zero MO2

part; all of them are perspective only to themselves, so [0, c] is a p-ideal.

• If the MO2 part of c is 1, then [0, c] contains precisely those elements whose
Boolean parts are less than or equal to the Boolean part of c; the MO2 part
does not matter. In that case, for any element d ∈ [0, c] with MO2 part in
{a, A, b, B}, we have that d× a, d× A, d× b, d× B are also all in [0, c], so it is a
p-ideal.

• If the MO2 part of c is in {a, A, b, B}, then [0, c] will only contain elements
whose MO2 part is either zero or coincides with that of c. This excludes in
particular the three other elements perspective to c, so in this case [0, c] is not
a p-ideal.

Thus, [0, c] is a p-ideal iff the MO2 part of c is zero or full, which is the case iff c
is a central element. Each of these p-ideals corresponds uniquely to a congruence
relation θ, with the p-ideal being the equivalence class of 0 under θ. (If the MO2

part of c is full, then 1 and 0 are identified, so the MO2 part of elements vanishes
under θ; otherwise, it remains distinguished. If any of the four “dots” x0, x1, x2, x3 of
c are “filled”, i.e. having the value 1 in the corresponding 2 factor, then that factor
vanishes under θ, otherwise, it remains distinguished.)

There are at least 32 congruence relations on FOML(α, β) ∼= MO2 × 2× 2× 2× 2,
namely the 25 possible products of congruence relations on the five simple factors
(choosing either the identity relation or the universal relation on each). Since there
are 32 p-ideals, and thus exactly 32 congruence relations, on FOML(α, β), these are
all its congruence relations.

The statement about quotient algebras follows immediately from the one-to-one
correspondence between quotient algebras and congruence relations, since if one of
the factors of a congruence relation on FOML(α, β) is the universal relation, then the
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corresponding factor gets collapsed into the one-element lattice, which is equivalent
to removing it from the product.

We finish this section with a brief remark on modularity.

Theorem 3.2.9 ([1], p. 86). FOML(α, β) is modular.

Proof. Since modularity is defined by identities, the direct product of modular lattices
is modular, thus the statement will be proved once we show that the two factors of
FOML(α, β) are both modular.

• 2
4 is Boolean, thus distributive, which implies modularity.

• MO2 is also modular; its Hasse diagram does not contain a pentagon. For
an alternative proof, note that any interval [x, y] ⊆ MO2 has 0 as its lower
endpoint, or 1 as its upper endpoint, or is a one-element set; in each case, the
upper and lower contractions x↑y and x↓y clearly coincide.

Corollary 3.2.10. In the variety of ortholattices there does not exist an identity in
two variables characterizing modularity.

Proof. If such an identity existed, then, since FOML(α, β) is modular, this identity
would hold in FOML(α, β), and therefore, since it has two variables, in every
orthomodular lattice; so this would imply that every orthomodular lattice is modular,
in contradiction to the lattice of Figure 2.1.
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Chapter 4

Orthomodular Lattice Arithmetic

4.1 Triplex Symbols
We begin this section by recalling some basic facts from universal algebra. Let K be
a variety of type τ , and let n ∈ N; then we denote by Tτ (n) the algebra of terms in
n variables and the algebraic operations of τ , and we denote by TK(n) the quotient
algebra of Tτ (n) under the congruence relation

s ≈ t ⇐⇒ the identity s = t holds in every algebra of K

(equivalently: on every algebra of K, the term functions induced by s and t coincide).
It is easy to verify that this indeed defines a congruence relation on Tτ (n), and hence
the algebraic operations are well-defined on TK(n). We will call the elements of
TK(n) n-ary term functions on the variety K. Strictly speaking this is incorrect;
they are not functions, as they lack a domain and a codomain. The name “term
functions on K” is motivated by the fact that two terms which are equal in TK(n)
induce equal functions on every algebra of K, and conversely, if two terms have the
property that for every algebra of K, they induce equal functions, then they are
equal in TK(n).

It is well-known that TK(n) is isomorphic to FK(n), the free algebra over K with n
generators; in fact, TK(n) is a canonical construction of FK(n) (see [5], p. 65). The
details of this result are summarized in the following theorem.

Theorem 4.1.1 (cf. [5], p. 65). The algebra TK(n) of term functions in the
variables x0, x1, . . . , xn−1 is isomorphic to the free algebra FK(n) with n generators
α0, α1, . . . , αn−1. Specifically, let ϕ : {α0, α1, . . . , αn−1} → TK(n) be defined by
ϕ(αi) = xi for all i; then TK(n) and FK(n) are isomorphic via the mapping ε and
its inverse η:

ε : TK(n) → FK(n) : ε(t) = t̂(α0, α1, . . . , αn−1);

η : FK(n) → TK(n) : η = ϕ,
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where t̂ is the term function induced by t on FK(n), and ϕ is the unique homomorphic
extension of ϕ.

Proof.

• ε is injective: Let s, t be n-ary term functions such that ε(s) = ε(t), that is,

ŝ(α0, α1, . . . , αn−1) = t̂(α0, α1, . . . , αn−1).

Let A be any algebra in K and ϕ be any map {α0, α1, . . . , αn−1} → A. Then
its unique homomorphic extension ϕ maps the elements ŝ(α0, α1, . . . , αn−1) and
t̂(α0, α1, . . . , αn−1) to the same element of A, since they are equal. Thus the
identity s = t holds in A; since A was arbitrary, the identity s = t holds in
every algebra in K, so s = t in TK(n).

• ε is surjective: Any element a of FK(n) is given by some term function t in the
n generators; thus ε(t) = a.

• η ◦ ε = idTK(n): For all t ∈ TK(n) we have

η(ε(t)) = η(t̂(α0, α1, . . . , αn−1))

= ϕ(t̂(α0, α1, . . . , αn−1))

= t̂(ϕ(α0), ϕ(α1), . . . , ϕ(αn−1))

= t̂(x0, x1, . . . , xn−1)

= t.

On any algebra A of K, any element of TK(n) induces a function in n arguments.
Through an appropriate definition of the algebraic operations on these functions,
this “function-inducing” map – denoted in the previous theorem by ˆ – can be made
into a homomorphism of TK(n) onto the set of term functions on A in n arguments;
this set, denoted by TA(n), consists of true functions. The next theorem describes
this result in detail.

Theorem 4.1.2. Let K be a variety of type τ , and let A be an algebra in K. For all
algebraic operators with symbol f and arity k in τ , define the operation f on TA(n)
by (

f(g0, g1, . . . , gk−1)
)
(x0, x1, . . . , xn−1)

= f
(
g0(x0, x1, . . . , xn−1), g1(x0, x1, . . . , xn−1), . . . , gk−1(x0, x1, . . . , xn−1)

)
.

With these operations, ˆ : TK(n) → TA(n) is a surjective homomorphism, and therefore
TA(n), being a homomorphic image of TK(n), is itself an algebra of the variety K.

Proof. The surjectivity of ˆ is obvious, since elements of TA(n) are by definition
functions induced by some element of TK(n). We verify the homomorphism property.
Let therefore t0, . . . , tk−1 be k elements of TK(n), let f be an algebraic operation
with arity k in TA(n), and set t := f(t0, t1, . . . , tk−1).
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Let a0, . . . , an−1 be n elements of A. Then we obtain

t̂(a0, a1, . . . , an−1)

= f
(
t̂0(a0, a1, . . . , an−1), t̂1(a0, a1, . . . , an−1), . . . , t̂k−1(a0, a1, . . . , an−1)

)
=

(
f(t̂0, t̂1, . . . , t̂k−1)

)
(a0, a1, . . . , an−1).

Since this holds for arbitrary a0, . . . , an−1 ∈ A, we have t̂ = f(t̂0, t̂1, . . . , t̂k−1).

In the sequel we apply these results mostly to the case n = 2 and K = OML, the
variety of orthomodular lattices. In this case it means that FOML(α, β) is isomorphic
to TOML(2), the algebra of binary term functions on orthomodular lattices, and the
set of induced binary functions on any specific orthomodular lattice is a homomorphic
image of TOML(2) and thus of FOML(α, β). Thus, there are only 96 distinct binary
term functions on orthomodular lattices, corresponding one-to-one with the 96
elements of FOML(α, β). For any orthomodular lattice L, the binary term functions
induced on L by TOML(2) are themselves given lattice-theoretical operations, defined
for all f, g ∈ TL(2) by

• x (f ∧ g) y := (x f y) ∧ (x g y); (T1)

• x (f ∨ g) y := (x f y) ∨ (x g y); (T2)

• x (f ′) y := (x f y)′; (T3)

• x 0 y := 0; x 1 y := 1. (T4)

Theorem 4.1.2 immediately guarantees that under these operations, TL(2) is itself an
orthomodular lattice.

A pair of generators of TOML(2) is given by the images of α and β under η, which
are the left projection ◁ and the right projection ▷, defined by

x ◁ y = x, x ▷ y = y.

Similar results also hold, for example, in the variety of Boolean algebras. Since
FBool(2) has only 16 = 22

2 elements, there are only 16 distinct binary term functions
on Boolean algebras, and applying the definitions (T1)–(T4) to binary term functions
induced on any Boolean algebra B makes TB(2) itself into a Boolean algebra.
Interestingly, 16 = 22

2 is also equal to the total number of binary functions (without
assuming that they are term functions) on 2, which, after checking that all binary
term functions on 2 are distinct, implies that every binary function on 2 is a term
function. Together with the characterization of any Boolean algebra as a subalgebra
of a direct product of copies of 2, this implies that any term function on Boolean
algebras can be characterized by picking a binary function on 2 and applying it
componentwise. Of course, this result has no analogue for orthomodular lattices.

Returning to the variety of orthomodular lattices, we find that the isomorphism
of FOML(α, β) with TOML(2) unlocks a new meaning of Navara’s symbols: they

47



can not only represent each of the 96 elements of FOML(α, β), but they also serve
as a compact notation of any binary term function on orthomodular lattices, by
identifying ◁ with α and ▷ with β. Below are a few examples of binary term functions
and the corresponding Navara symbols.

◁ ▷ ∧ ∨

⇓ ⇑ 0 1

(Here 0 and 1 are defined as in (T4), that is, functions that ignore both of their
arguments and return 0 and 1 respectively.)

Thanks to the isomorphism, one can apply lattice-theoretical operations to these
symbols under their interpretation as binary functions (by the definitions (T1)–(T4)),
and they follow the same computation rules also under the new interpretation. For
example, on the one hand, the equation ∧ = means that the equation
(α ⇓ β) ∧ (α ⇑ β) = 0 holds for the two generators α, β of FOML(α, β); but on the
other hand, it also means that the identity (x ⇓ y) ∧ (x ⇑ y) = 0 holds in every
orthomodular lattice L, which can also be symbolically expressed as “⇓ ∧ ⇑ = 0”.

As an example to motivate the upcoming steps, one could write the definition of the
commutativity relation as follows:

aCb iff a = (a b) ∨ (a b).

However, expressing it in this way leaves much to be desired: the notation is hardly
more compact than the traditional (a ∧ b) ∨ (a ∧ b′). The power of Navara symbols
is that the orthocomplements, meets, and joins of any binary term functions are
once again binary term functions, and Navara symbols can notate any binary term
function on orthomodular lattices in just one symbol. In our case, the definition of
commutativity can be condensed to

aCb iff a = a b.

The elegance in this is that the correct symbol ( ) for the binary term function
(a, b) 7→ (a ∧ b) ∨ (a ∧ b′) was computed simply as ∨ , by the same evaluation
rules as when the Navara symbols stood for elements of FOML(α, β). Quite literally,
the intermediate step was

aCb iff a = a ( ∨ ) b,

(applying (T2)), and then evaluating the join of the symbols.
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If the occurrences of the arguments a and b are not perfectly aligned for the application
of (T1)–(T4), we can use a trick employing the left and right projections ◁ and ▷,
with respective symbols and . For example, one way to state the orthomodular
law is

a ≤ b ⇒ a ∨ (a b) = b,

in which there are too many occurrences of a to apply (T2), so we replace the first a
by a ◁ b = a b. Now (T2) can be applied and we obtain the compact formulation

a ≤ b ⇒ a b = b.

In fact, the Navara symbols for the meet and join operations can be derived in this
way: we rewrite

a ∧ b = (a ◁ b) ∧ (a ▷ b) = (a b) ∧ (a b) = a ( ∧ ) b = a b,

and likewise for ∨. This gives rise to the very elegant mnemonic that the Navara
symbols for the meet and join operations are the literal meet and join of the symbols
for the generators, and .

This process also generalizes: clearly, in any term t, replacing every occurrence of a
by a ◁ b and every occurrence of b by a ▷ b creates a term in which all occurrences
of a and b are “balanced” for the application of (T1)–(T4), so that replacing ◁ and
▷ with their Navara symbols, and , allows to reduce the term to the form
a Φ b, where Φ is a single Navara symbol. By the isomorphism of FOML(α, β) with
TOML(2), we find that Φ encodes the same binary term function as t. We can also
skip introducing the variables a, b and applying the axioms (T1)–(T4), at which
point the first transformation we had applied to t becomes a substitution of for a
and for b. In conclusion, the Navara symbol corresponding to the binary term
function t(a, b) is simply t( , ).

We can take this concept further, beyond just the lattice-theoretical operations. Since
the elements of FOML(α, β) ∼= TOML(2), represented by Navara symbols, can induce
binary functions on any orthomodular lattice L, they can in particular induce binary
functions on TOML(2) itself. Therefore its elements can be thought of as binary
functions from itself onto itself, which allows us to interpret a sequence f g h of three
elements of FOML(α, β) as evaluating to the single element ĝ(f, h). We define this
notion more precisely below.

In this context, by a symbol Φ we mean an element of FOML(α, β) ∼= TOML(2),
which we will usually write using Navara’s notation. A sequence of three symbols,
Φ Ξ Ψ, will be called a triplex symbol ; it can be evaluated into a single element
of FOML(α, β) by setting

Φ Ξ Ψ := ξ̂(Φ,Ψ) where ξ := η(Ξ).
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Here Ξ is seen as an element of TFOML(α,β)(2), while Φ and Ψ are seen as elements of
either TOML(2) or FOML(α, β) interchangeably.

Thus, for an orthomodular lattice L, triplex symbols extend the concept of equipping
TL(2) with lattice-theoretical operations into equipping it with all of TOML(2); they
generalize the computation on Navara symbols with the operations {∧,∨, ′} to cases
where the operation is itself an arbitrary Navara symbol. Some examples of triplex
symbols along with their evaluations are presented below.

= =

= =

= =

= =

The first three rows represent computations which are already familiar; from top
to bottom and left to right, in row-major order, the central symbols in these
computations stand for the operations ◁, ▷,∧,∨,0,1. The computations in the
bottom row are more complex, and it is not immediately clear how to arrive at their
respective results. We can verify by inspection that the terms corresponding to the
middle symbols are

a b = (a ∨ b) ∧ (a′ ∨ b′); a b = (a ∧ b′) ∨ (a′ ∧ b) ∨ (a′ ∧ b′),

and confirm the computations this way, but this offers no general procedure. While
we know how to transform a given term t in two variables and the lattice-theoretical
operations into the corresponding Navara symbol (just evaluate t( , )), the
reverse process – constructing a term that corresponds to a given Navara symbol, and
thus evaluating any binary term function encoded as a Navara symbol – is non-trivial.
We will abandon this approach, in favor of a method of evaluating triplex symbols
that completely bypasses the explicit construction of a corresponding term.

These two final examples serve as motivation to find a procedure for automated
evaluation of triplex symbols, as each of them demonstrates a potential application.
We will see that the evaluation of triplex symbols can be used to characterize
relations on orthomodular lattices defined by identities, and to compute simple
variations of a binary term function (such as swapping the order of its arguments).
In particular, we will see, among other things, that two elements Φ,Ψ ∈ TOML(2)
are equal iff the triplex symbol Φ Ψ equals 0, and that a binary term function
Φ ∈ TOML(2) is commutative iff the triplex symbol Φ equals Φ. Therefore,
these last two computations encode the fact that = , and that the operation

is commutative, purely in terms of evaluation of triplex symbols.

We therefore turn our attention to the question of how to evaluate any given triplex
symbol. The answer we present in the next section is applicable to both mental
arithmetic and computer programs, demonstrated with an implementation in the
programming language Haskell.
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4.2 Evaluation of Triplex Symbols
At the heart of the techniques in this section is the following elementary observation,
which is a special case of Theorem 4.1.2 and which we restate here for future reference:

Composition Rule for Symbols. For any orthomodular lattice L and any a, b ∈ L,
and for all symbols Φ,Ψ ∈ FOML(α, β), we have

a (Φ ∧Ψ) b = (a Φ b) ∧ (a Ψ b); a (Φ ∨Ψ) b = (a Φ b) ∨ (a Ψ b).

The core idea is to use this rule, along with the observation from Theorem 3.2.4
that FOML(α, β) is atomistic, to decompose any Navara symbol into its atomic
components. Evaluating a triplex symbol Φ Ξ Ψ then reduces to evaluating each
Φ Ξi Ψ for all i taken from some index set I, where the Ξi are all atoms of FOML(α, β),
and then taking the join of them all. Since FOML(α, β) only has eight atoms, this
reduces the number of base cases for Ξ from 96 to only 8, and any computation for
an arbitrary Ξ will take at most 8 steps. Actually, we can do even better: Since the
MO2 part of Ξ always takes at most two atoms to assemble, and the only choice that
requires two atoms is , we can include as a base case: then, we have 9 base
cases, but every computation takes only at most 5 steps, at most one of which is
MO2 and the remaining ones are all Boolean.

Thus it suffices to characterize the atomic binary term functions. The four Boolean
atoms are each a single meet of at most two orthocomplements, analogous to
being the symbol for the meet operation itself; meanwhile, Theorem 3.2.2 already
gives term representations for the four MO2 atoms:

• a b = a ∧ b,

• a b = a ∧ b′,

• a b = a′ ∧ b,

• a b = a′ ∧ b′,

• a b = (a′ ∨ b) ∧ (a′ ∨ b′) ∧ a,

• a b = (b ′ ∨ a) ∧ (b ′ ∨ a′) ∧ b,

• a b = (a ∨ b) ∧ (a ∨ b ′) ∧ a′,

• a b = (b ∨ a) ∧ (b ∨ a′) ∧ b′.

Finally, is the symbol for the upper commutator:

a b = (a ∨ b) ∧ (a ∨ b′) ∧ (a′ ∨ b) ∧ (a′ ∨ b′) = a ⇑ b.

The correctness of these terms can be verified by term substitution. Illustratively we
verify :

( ∨ ) ∧ ( ∨ ) ∧ = ( ∧ ) ∧ = ∧ = .
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This already suffices to construct an algorithm that can evaluate a Φ b for any symbol
Φ and a, b taken from any orthomodular lattice L on which all the lattice-theoretical
operations are defined: decompose Φ into its Boolean atoms and its MO2 part,
evaluate all the corresponding terms in a and b, and take the join. In particular, this
algorithm is sufficient for evaluating triplex symbols.

However, it falls short of the goal of providing mental arithmetic: while the Boolean
atoms are each just a single meet of possibly orthocomplemented inputs, the MO2

atoms are significantly more complex. In fact, when specializing just for triplex
symbols (that is, assuming L = FOML(α, β)), we can do much better: we can simplify
the computation of the MO2 atoms drastically.

Note, firstly, what happens when a and b commute. In that case a b = 0 by
Theorem 3.1.1. This implies a Φ b = 0 for any “purely MO2” symbol Φ (that is, a
symbol whose Boolean parts are all zero), because such a symbol Φ satisfies Φ ≤ ,
thus = Φ ∨ , and therefore

0 = a b = a (Φ ∨ ) b = (a Φ b) ∨ (a b) = (a Φ b) ∨ 0 = a Φ b.

Thus, for all five MO2 base cases, the value is simply 0 if the two arguments commute.
In particular, when evaluating triplex symbols, the Boolean part of the result of any
purely MO2 operation is always 0, since all pairs of elements commute in a Boolean
algebra. Therefore, the result is always itself purely MO2, and depends only on the
MO2 components of the operands.

As a result, we can shortcut the five base cases by working out their operation
tables in MO2. Out of the 36 possible pairs of MO2 elements, 28 commute, and
thus will result in 0 for each of the five operations; the remaining 8 pairs must be
checked manually for each operation to identify further possibilities for shortcuts.
We accomplish this with a Haskell program.

We begin by defining ortholattices: the meet and join are binary operations, the
orthocomplement is unary and the zero and unit are nullary. The meet and join, and
the zero and unit, can also be defined in terms of each other using De Morgan’s laws.

infixr 5 ∧ , ∨ −− ∧ and ∨ are right associative with precedence 5

class Ortholattice t where
(∧ ) :: t → t → t −− meet
(∨ ) :: t → t → t −− join
cpl :: t → t −− orthocomplement
zero :: t −− least element
unit :: t −− greatest element

a ∧ b = cpl (cpl a ∨ cpl b)
a ∨ b = cpl (cpl a ∧ cpl b)
zero = cpl unit
unit = cpl zero
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Next, we define the operations we wish to tabulate on MO2. They include the four
atomic MO2 operations and the (non-atomic) upper commutator.

mo2l :: (Ortholattice t) ⇒ t → t → t
mo2r :: (Ortholattice t) ⇒ t → t → t
mo2l’ :: (Ortholattice t) ⇒ t → t → t
mo2r’ :: (Ortholattice t) ⇒ t → t → t
upcom :: (Ortholattice t) ⇒ t → t → t

a mo2l b = let a’ = cpl a; b’ = cpl b in a ∧ (a’∨b ) ∧ (a’∨ b’)
a mo2r b = let a’ = cpl a; b’ = cpl b in b ∧ (a ∨ b’) ∧ (a’∨ b’)
a mo2l’ b = let a’ = cpl a; b’ = cpl b in a’ ∧ (a ∨b ) ∧ (a ∨ b’)
a mo2r’ b = let a’ = cpl a; b’ = cpl b in b’ ∧ (a ∨b ) ∧ (a’∨b )
a upcom b = let a’ = cpl a; b’ = cpl b in (a∨b) ∧ (a∨ b’) ∧ (a’∨b) ∧ (a’∨ b’)

Now we can make MO2 into an ortholattice, by defining its ortholattice operations:

data MO2 = O | A | B | B’ | A’ | I deriving (Eq, Enum, Bounded)

instance Ortholattice MO2 where

O ∧ _ = O −− 0 ∧ x = 0
_ ∧ O = O −− x ∧ 0 = 0
I ∧ x = x −− 1 ∧ x = x
x ∧ I = x −− x ∧ 1 = x
x ∧ y | x = y = x −− x ∧ x = x
_ ∧ _ = O −− x ∧ y = 0 otherwise

I ∨ _ = I −− 1 ∨ x = 1
_ ∨ I = I −− x ∨ 1 = 1
O ∨ x = x −− 0 ∨ x = x
x ∨ O = x −− x ∨ 0 = x
x ∨ y | x = y = x −− x ∨ x = x
_ ∨ _ = I −− x ∨ y = 1 otherwise

cpl O = I
cpl A = A’
cpl B = B’
cpl B’ = B
cpl A’ = A
cpl I = O

zero = O
unit = I
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Tabulating the five purely MO2 operations on MO2 is now a straightforward matter
(see e.g. the function drawTable in the full source code). The results are presented
below, where the rows correspond to the left argument and the columns to the right
argument. The rows and columns for 0 and 1 have been omitted in each case, because
– as remarked earlier – the result is always 0 if either argument is equal to one of
them, since in these cases the two arguments commute.

Table 4.1: The four atomic MO2 operations on MO2

Table 4.2: The upper commutator operation on MO2
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As we can see by inspecting these tables, each of the five purely MO2 operations
can be reduced to a simple rule if the operands are themselves both elements of
MO2: For any purely MO2 operation Φ and any a, b ∈ MO2, if aCb, then a Φ b = 0;
otherwise,

a b = a; a b = b; a b = a′; a b = b′; a b = 1.

Given that commutativity in MO2 is very straightforward to test for, this gives us
a much more efficient method to compute the purely MO2 operations with MO2

operands (and, therefore, also with FOML(α, β) operands), completing the need for
a better algorithm for evaluating triplex symbols. We now proceed to implement it.

In preparation for making FOML(α, β) into an ortholattice, we first make 2 into one.
In Haskell, 2 is represented by the type Bool = {False,True}, with the operations
of logical conjunction, disjunction, and negation:

instance Ortholattice Bool where
(∧ ) = (&&) −− logical conjunction
(∨ ) = (||) −− logical disjunction
cpl = not −− logical negation
zero = False
unit = True

Now we can make FOML(α, β) (here called F2OML) into an ortholattice, via the
direct product MO2 × 2× 2× 2× 2. The operations are all simply componentwise.

data F2OML = F2 MO2 Bool Bool Bool Bool

instance Ortholattice F2OML where

F2 a al au ad ar ∧ F2 b bl bu bd br = F2 (a∧b) (al∧ bl ) (au∧bu) (ad∧bd) (ar∧br)
F2 a al au ad ar ∨ F2 b bl bu bd br = F2 (a∨b) (al∨ bl ) (au∨bu) (ad∨bd) (ar∨br)

cpl (F2 x xl xu xd xr) = F2 (cpl x) (cpl xl ) (cpl xu) (cpl xd) (cpl xr)

zero = F2 zero zero zero zero zero
unit = F2 unit unit unit unit unit

Finally, we can implement the triplex symbol evaluation algorithm. We break up
the middle symbol into its atomic components, where is considered atomic. The
Boolean parts are evaluated directly. The MO2 parts each always produce a result
whose Boolean part is zero and whose MO2 part is determined by the rules from
above: if the arguments commute, it is zero, otherwise they return the left or right
argument, or their complements, or the unit, respectively.
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Commutativity in FOML(α, β) was characterized in Theorem 3.2.5: we ignore the
Boolean parts and test only if the MO2 parts commute, which do so minimally.

comF2OML :: F2OML →F2OML →Bool
(F2 a _ _ _ _) comF2OML (F2 b _ _ _ _) −− extract just the MO2 parts
| a = zero = True −− 0Cb
| b = zero = True −− aC0
| a = unit = True −− 1Cb
| b = unit = True −− aC1
| a = b = True −− aCa
| a = cpl b = True −− aCa′

| otherwise = False −− ¬(aCb) otherwise

We next define the auxiliary function projectMO2, the “projection” onto the MO2

component: it takes an element of FOML(α, β) and sets all its Boolean parts to zero.

projectMO2 :: F2OML →F2OML
projectMO2 (F2 x _ _ _ _) = F2 x zero zero zero zero

Next, we define evaluateMO2, our “shortcut” for how to evaluate the six purely MO2

operations (encoded here as elements of MO2) for elements of FOML(α, β).

evaluateMO2 :: F2OML →MO2 →F2OML →F2OML
evaluateMO2 a _ b | a comF2OML b = zero −− if aCb, the result is always zero
evaluateMO2 _ O _ = zero
evaluateMO2 a A _ = projectMO2 a −− a b
evaluateMO2 _ B b = projectMO2 b −− a b
evaluateMO2 _ B’ b = projectMO2 (cpl b) −− a b
evaluateMO2 a A’ _ = projectMO2 (cpl a) −− a b
evaluateMO2 _ I _ = projectMO2 unit −− a b

Finally, we can evaluate triplex symbols:

evaluateTriplex :: F2OML →F2OML →F2OML →F2OML
evaluateTriplex a (F2 f fl fu fd fr) b = let

a’ = cpl a
b’ = cpl b
xl = if fl then a ∧ b’ else zero −− a b = a ∧ b′

xu = if fu then a’∧ b’ else zero −− a b = a′ ∧ b′

xd = if fd then a ∧b else zero −− a b = a ∧ b
xr = if fr then a’∧b else zero −− a b = a′ ∧ b
x = evaluateMO2 a f b −− evaluate the MO2 part
in x ∨ xl ∨ xu ∨ xd ∨ xr −− take the join of all results
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(The above function evaluateTriplex, while functional, still lacks an interface: we
can’t easily specify triplex symbols to be evaluated nor print the results. This is
implemented in the full source code by making F2OML an instance of Show and
Read. This code is not shown here; we leave the details to the interested reader.)

Note that this improvement is specific to the evaluation of triplex symbols: the “simple”
algorithm from the beginning of this section (just evaluating a term corresponding to
each atomic component) cannot be improved in a way analogous to evaluateTriplex
if a and b are taken to be elements of an arbitrary orthomodular lattice. This is
because projectMO2 is not a term function: there is no term t in one variable and
the ortholattice operations which induces projectMO2 on FOML(α, β). Such a term
t would have to correspond to an element of FOML(α), the free orthomodular lattice
with one generator; and it is easy to see that this lattice consists of the four elements
0,1, α, α′, whose corresponding term functions are x 7→ 0, x 7→ 1, id, ′. (It is free
over {α} also in the class of ortholattices and Boolean algebras.) Clearly, none of
these term functions induce projectMO2 on FOML(α, β).

To expose a simple mechanical application of our algorithm for evaluating triplex
symbols, we begin by formulating a stronger version of the Composition Rule which
holds for all triplex symbols:

Composition Rule for Triplex Symbols. For any orthomodular lattice L and
any a, b ∈ L, and for all symbols Φ,Ξ,Ψ ∈ FOML(α, β), we have

a (Φ Ξ Ψ) b = (a Φ b) Ξ (a Ψ b).

This version follows from the weaker one simply by noting that homomorphisms,
which preserve all fundamental operations, necessarily also preserve all term functions.
From this rule we can deduce the following “self-preserving” identity of triplex symbols:

For all symbols Φ ∈ FOML(α, β), we have Φ = Φ.

Indeed,

a ( Φ ) b = (a b) Φ (a b) = (a ◁ b) Φ (a ▷ b) = a Φ b.

What happens if we swap the order of the arguments?

a ( Φ ) b = (a b) Φ (a b) = (a ▷ b) Φ (a ◁ b) = b Φ a.

Thus the triplex symbol Φ produces the converse function Φ̃, defined by
a Φ̃ b = b Φ a. Similar transformations are possible with related triplex symbols; for
example, the triplex symbol Φ produces the function Φ∁ defined by a Φ∁ b =
a′ Φ b′; we shall call it the conjugate of Φ.

A question arises whether Navara’s notation simplifies the computation of such
function transformations, perhaps into a geometric alteration of the corresponding
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symbol. Using our algorithm, we know there is no need to check all 96 symbols in
an attempt to find a rule; it suffices to transform the eight atoms. To illustrate, we
show the computations for producing converse functions:

= = = =

= = = =

Thus we see that every atom is mapped to its horizontal mirror image, and therefore
all Navara symbols are mapped to their horizontal mirror images. Navara’s notation
thus elegantly allows to construct any given symbol’s converse simply by flipping it
horizontally.

Carrying out analogous computations for combinations of complementing the left
argument, complementing the right argument, and interchanging the arguments
reveals that each such combination corresponds to a geometric transformation of the
Navara symbol, represented by an element of the dihedral group D4:

Triplex symbol Function Geometric transformation
Φ a Φ b Identity
Φ a′ Φ b Reflection along the diagonal ⧹
Φ a Φ b′ Reflection along the diagonal ⧸
Φ a′ Φ b′ Rotation by a half turn
Φ b Φ a Horizontal reflection
Φ b′ Φ a Rotation by a quarter turn clockwise
Φ b Φ a′ Rotation by a quarter turn counterclockwise
Φ b′ Φ a′ Vertical reflection

Table 4.3: Geometric transformations of Navara symbols

This can be used, for instance, to derive the dual symbol of any given Navara symbol
Φ. The dual symbol to Φ is defined as the symbol Φδ such that a Φδ b = (a′ Φ b′)′. It
is so called because, for any orthomodular lattice L, the symbol corresponding to Φ
in the dual lattice to L is Φδ. Since the dual is the complement of the conjugate, from
the above table it follows that the dual of a Navara symbol is formed by rotating it
by half a turn and building the set-theoretical complement (or doing those steps in
the reverse order). For instance, the dual of is

( ∁)′ = ′ = .

Indeed, and are the symbols for ∧ and ∨ respectively, which are mutually dual.

Another use is an easy proof of a statement, appearing in [3], that out of the 96
binary term functions on orthomodular lattices, exactly 16 are commutative. A
binary term function is commutative iff it is equal to its own converse, which, for
a Navara symbol, means that it must be horizontally symmetric. Therefore, four
independent binary choices are possible: the bottom dot, the top dot, the two side
dots (either both present or both absent), and the MO2 part (either zero or full),
leading to 16 possibilities overall.
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4.3 Application: Relations defined by identities
This section aims to expose a more advanced application of arithmetic on triplex
symbols, to study so-called relations defined by identities on orthomodular lattices.

For a variety K of type τ , we shall call an element of
(
Tτ (2)

)2 a binary term identity.
Define Θτ as the set of finite subsets of

(
Tτ (2)

)2. On any algebra A of K, an element
S of Θτ can induce a binary relation S as follows: for all a, b ∈ A,

a
{
(s0, t0), (s1, t1), . . . , (sn−1, tn−1)

}
b

iff

∀ i < n : si(a, b) = ti(a, b).

Define ΘK as the quotient set of Θτ under the equivalence relation

S ≈ S ′ ⇔ for all algebras A ∈ K, S = S ′ in A

(that is, two elements of Θτ are equivalent iff on every algebra of K, the binary
relations induced by them coincide). In analogy to the beginning of this chapter,
through abuse of terminology we will refer to elements of ΘK as binary relations on K
defined by identities. To give a few examples, on any variety K, the equality relation
and the universal relation are both defined by identities, by taking S = {(◁, ▷)} and
S = ∅ respectively. The empty relation can never be defined by identities, since
every variety contains one-element algebras, which satisfy every identity; however,
there may exist a “near-empty” relation, which induces the empty relation on every
nontrivial algebra of K.

Some examples for the case K = OML:

• ≤ is defined by identities, since a ≤ b is defined by a = a ∧ b (equivalently
b = a ∨ b), so we can take S = {(a, a ∧ b)} or S = {(b, a ∨ b)}.

• The orthogonality relation ⊥, where a ⊥ b is defined by a ≤ b′ (equivalently
b ≤ a′). In general, if a relation R is defined by identities, then so is any
relation of the form s(a, b)R t(a, b), where s, t ∈ TOML(2).

• The commutativity relation C, defined for example by a = (a ∧ b) ∨ (a ∧ b′).

• An example defined by two identities is position P ′ (see e.g. [7]), using
S = {(a ∧ b′,0), (a′ ∧ b,0)}.

• Non-examples include <, ≺, or ∼ (perspectivity).

For orthomodular lattices, a special case of relations defined by identities are relations
defined by a symbol, that is, relations R which admit a definition

aRb iff a Φ b = 0,

59



for some symbol Φ ∈ FOML(α, β). In this context, we shall call Φ the characteristic
symbol of R. Every such relation is defined by identities (since for every symbol
Φ ∈ FOML(α, β) there exists a term t that encodes the same binary function).
Interestingly, the converse also holds: to every relation defined by identities on
orthomodular lattices, there exists a characteristic symbol. We will prove this
statement in two steps.

Firstly, any relation defined by multiple symbols can also be characterized by one:

Theorem 4.3.1. Let S ∈ ΘOML be defined by the identities

a Φ0 b = 0; a Φ1 b = 0; . . . a Φn−1 b = 0

where Φi ∈ FOML(α, β) for all i < n, n ∈ N. Then S can also be defined by a single
identity a Φ b = 0, namely with Φ = Φ0 ∨ Φ1 ∨ . . . ∨ Φn−1.

Proof. The statement is trivial for n = 1. For n = 0, the universal relation, is a
characteristic symbol (since a b = 0 for all a, b in any orthomodular lattice), and

=
∨

∅. For n > 1, we will prove the case n = 2; the general case follows inductively.
Suppose then that a relation S ∈ ΘOML is defined by aSb iff a Φ b = a Ψ b = 0 for
two symbols Φ,Ψ ∈ FOML(α, β). We have seen in the first chapter that in any lattice
L with zero, for all x, y ∈ L, (x = 0 and y = 0) is equivalent to x ∨ y = 0; thus, the
condition a Φ b = a Ψ b = 0 is equivalent to 0 = (a Φ b) ∨ (a Ψ b) = a (Φ ∨Ψ) b.
Therefore, Φ ∨Ψ is a characteristic symbol of S.

(Note that an analogous statement with the meet of symbols characterizing logical
disjunction of multiple identities does not hold, since x ∧ y = 0 does not imply
(x = 0 or y = 0). The case n = 0 makes it particularly clear that this cannot be
the case: the logical conjunction of zero identities gives the universal relation, which
has a characteristic symbol; the logical disjunction of zero identities gives the empty
relation, which cannot be defined by identities in any way, let alone by a symbol.)

The full equivalence between relations defined by identities and relations defined by
a characteristic symbol will then be proved once we show that any relation defined
by a single identity also admits a characterization through a symbol. To this end,
we first prove a seemingly unrelated auxiliary result:

Theorem 4.3.2. Let L be an orthomodular lattice and a, b ∈ L. The following
statements are equivalent:

(i) a = b;

(ii) a, b are in position P ′ and additionally aCb.

Proof. (i) ⇒ (ii) is trivial, since commutativity is reflexive and for position P ′ we
obtain a ∧ b′ = b ∧ b′ = 0 and a′ ∧ b = a′ ∧ a = 0. Suppose therefore that a, b are in
position P ′ and aCb holds. Then we obtain a = (a∧ b)∨ (a∧ b′) = (a∧ b)∨0 = a∧ b,
so that a ≤ b. We also have bCa, since L is orthomodular, and therefore also
b = (b ∧ a) ∨ (b ∧ a′) = (b ∧ a) ∨ 0 = b ∧ a, so b ≤ a as well. By antisymmetry, a = b,
proving (ii) ⇒ (i).
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The significance of this result lies in the fact that both commutativity and each of
the two “components” of position P ′ have characteristic symbols: position P ′ can be
expressed as a b = 0 and a b = 0, while we know from Theorem 3.1.1 that
aCb holds iff a b = 0. Thus, we can apply Theorem 4.3.1 and construct the join
of these three symbols to obtain the following central result:

is the characteristic symbol of the equality relation.

Using triplex symbol arithmetic, this allows us to construct a characteristic symbol
for any relation defined by a single identity:

Theorem 4.3.3. Let S ∈ ΘOML be defined by a single identity s(a, b) = t(a, b) for
some terms s, t ∈ TOML(2). Then there exists a symbol Ξ ∈ FOML(α, β) such that
aSb iff a Ξ b = 0 holds (i.e. Ξ is a characteristic symbol of S), namely Ξ = Φ Ψ,
where Φ and Ψ are the symbols corresponding to s and t respectively.

Proof. We apply the composition rule for triplex symbols, along with the fact that
characterizes equality:

aSb⇔ s(a, b) = t(a, b)

⇔ a Φ b = a Ψ b

⇔ (a Φ b) (a Ψ b) = 0

⇔ a (Φ Ψ) b = 0.

Thus in the case of a single identity, there always exists a characterization through
a symbol. In the case of multiple identities, find the symbol for each one and
take the join. (Since FOML(α, β) is a finite lattice, this even works for infinitely
many identities.) Finally, in the case of zero identities, take as the characteristic
symbol. Overall, it follows that any relation characterized by a set of identities has a
characterization by a single symbol; thus, to summarize:

Corollary 4.3.4. In the variety of orthomodular lattices, the set of relations
characterized by identities is identical to the set of relations characterized by a
symbol.

In particular, the existence of a symbol for any relation characterized by identities
is always guaranteed. What about uniqueness? To test this, let us construct the
characteristic symbol of a ≤ b using its two equivalent definitions by identities:

a = a ∧ b ⇔ a b = a b ⇔ a ( ) b = 0 ⇔ a b = 0;

b = a ∨ b ⇔ a b = a b ⇔ a ( ) b = 0 ⇔ a b = 0.

The two approaches gave different results. This is not a contradiction to Theorem
4.3.3: both and are indeed characteristic symbols for ≤. Their term functions
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are not identical, but they do return 0 under the same conditions. Thus, uniqueness
is not always given. To clarify exactly when it isn’t, and by how much, we begin
with the following observation:

Theorem 4.3.5. Let L be an orthomodular lattice and a, b ∈ L. The following
statements are equivalent:

(i) aCb;

(ii) a b = 0;

(iii) a Φ b = 0 for some nonzero, purely MO2 symbol Φ;

(iv) a Φ b = 0 for all nonzero, purely MO2 symbols Φ.

Proof. (i) ⇔ (ii) has been established in Theorem 3.1.1. (iv) ⇒ (ii) ⇒ (iii) is trivial.

To show (iii) ⇒ (iv), one way is to inspect Tables 4.1 and 4.2: wherever any one of
the five operations takes the value 0, all five do. Alternatively, avoiding the need for
direct calculation, we can rephrase the statements in terms of quotient algebras: we
consider

q
{a, b}

y
, which, being generated by two elements, is isomorphic to a quotient

algebra of FOML(α, β). We make use of Theorem 3.2.8 stating that all congruence
relations on FOML(α, β) are products of congruence relations on its simple factors,
along with Theorem 3.1.3 stating that MO2 is a simple lattice. This lets us conclude
that if a congruence relation on FOML(α, β) identifies 0 with some nonzero, purely
MO2 element, then it collapses the entire MO2 part of FOML(α, β).

The above theorem implies that , , , , are all equivalent as characteristic
symbols for the commutativity relation. Similarly, Φ× a,Φ× b,Φ× A,Φ× B,Φ× 1

are equivalent for any symbol Φ, and we pick the form Φ× 1 as the “standard form”.
Using and as an example,

a b = 0

⇔ (a b) ∨ (a b) = 0

⇔ a b = 0 and a b = 0

⇔ a b = 0 and a b = 0

⇔ (a b) ∨ (a b) = 0

⇔ a b = 0.

Up to equivalence of standard forms, there are 32 distinct symbols in FOML(α, β);
they form a subalgebra isomorphic to 2

4 × {0, 1} ∼= 2
5. The theorem below shows,

among other things, that this is the only redundancy in characteristic symbols:

Theorem 4.3.6. Two symbols Φ,Ψ ∈ FOML(α, β) define the same relation in ΘOML

iff Φ and Ψ have the same standard form. Thus, there are exactly 32 relations defined
by identities on orthomodular lattices.
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Proof. There are at most 32 relations defined by identities, since 32 is the number of
elements of 24 × {0, 1}. To show that there are no further redundancies, consider
the five atoms of 24 × {0, 1} ( , , , , ) and the corresponding relations:
a ∧ b′ = 0; a′ ∧ b′ = 0; a ∧ b = 0; a′ ∧ b = 0; aCb. (We will denote the first four by
the symbols ≲, ⊤∼,

⊥
∼,≳ respectively.) Every relation defined by identities is some

(possibly empty) conjunction of these conditions, thus we need to verify that no two
such conjunctions are equivalent.

Firstly, let n,m ∈ N, and let pi and qj be families of formulas in two bound variables
a, b, and suppose that the following proposition holds:

∀ a, b :
(
∀ i < n : pi(a, b)

)
⇔

(
∀ j < m : qj(a, b)

)
,

where the sets {pi | i < n} and {qj | j < m} are not equal. In that case, one of these
sets contains a formula that the other set does not; suppose WLOG that {qj | j < m}
contains such a formula, call it q. Then we conclude that the following must hold:

∀ a, b :
(
∀ i < n : pi(a, b)

)
⇒ q(a, b),

and the pi for i < n are all distinct from q.

If two different elements of 24 × {0, 1} correspond to the same relation defined
by identities, then there are two different sets of conjunctions of “atomic relations”
equivalent to one another. Therefore, by the above, one of these atomic relations
must be implied by the remaining four in every orthomodular lattice L and for all
a, b ∈ L. To disprove this, for each atomic relation R we present an orthomodular
lattice L and two elements a, b ∈ L such that a, b are in every atomic relation other
than R, but not R itself:

L a b ≲ ⊤
∼

⊥
∼ ≳ C

2 1 0 ✓ ✓ ✓ ✓

2 0 0 ✓ ✓ ✓ ✓

2 1 1 ✓ ✓ ✓ ✓

2 0 1 ✓ ✓ ✓ ✓

MO2 a b ✓ ✓ ✓ ✓

Table 4.4: Mutual independence of the five atomic relations

Thus, none of the atomic relations is implied by the remaining four, and so all 32
possible conjunctions of them are pairwise distinct.

The statement of Theorem 4.3.6 exposes a surprisingly regular structure for relations
defined by identities on orthomodular lattices. They form a lattice themselves, which
is also isomorphic to 2

5. In this lattice, the meet is the set-theoretical intersection,
though – as remarked earlier – the join is just a supremum, and generally not the
set-theoretical union; for instance, in this lattice, (≤) ∨ (≥) = C ⊋ (≤) ∪ (≥). The
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unit of this lattice is the universal relation; the zero is the “near-empty” relation
characterized by the symbol and the corresponding identity 1 = 0, which is
universally true in the one-element lattice and universally false in all others. The five
so-called “atomic relations” are actually the co-atoms of this lattice, and every element
is a (possibly empty) meet of them. Some example representations of relations as
meets of co-atoms include:

• (≤) = (≲) ∧ C, (≥) = (≳) ∧ C;

• (⊥) = (⊥∼) ∧ C;

• (⊤) = (⊤∼) ∧ C, where ⊤ is the dual relation to ⊥;

• P ′ = (≲) ∧ (≳);

• (=) = (≲) ∧ (≳) ∧ C = (≤) ∧ (≥) = P ′ ∧ C.

Relations such as <, ≺, or ∼ are also definable on any orthomodular lattice, but
they do not admit characterizations through identities only. To prove this, it suffices
to eliminate each atomic relation as a possible component. To illustrate, we close
this section with a proof for perspectivity:

Corollary 4.3.7. The perspectivity relation cannot be defined by identities only.

Proof. We exclude all atomic relations R that cannot be part of a conjunction that
assembles ∼, by finding an orthomodular lattice L and elements a, b ∈ L such that
a ∼ b, but ¬ (aRb) holds:

• In 2, 1 ∼ 1 but ¬ (1 ⊥
∼ 1); likewise, 0 ∼ 0 but ¬ (0 ⊤

∼ 0).

• In MO2, a ∼ b but ¬ (aC b).

• In the orthomodular lattice of Figure 2.1, we have c′ ∼ a, but c′ ∧ a′ = b ≠ 0,
so ¬ (c′ ≲ a). Likewise, a ∼ c′ but ¬ (a ≳ c′).

We have eliminated all five atomic relations. Thus the only possible conjunction for
∼ would be the empty conjunction; but ∼ is not the universal relation (e.g. ¬ (0 ∼ 1)
holds in 2). Therefore, ∼ cannot be characterized by identities.
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